K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2021

Theo công thức trung tuyến:

\(\left\{{}\begin{matrix}\dfrac{2AB^2-AC^2}{4}=BM^2-\dfrac{BC^2}{2}\\\dfrac{2AC^2-AB^2}{4}=CN^2-\dfrac{BC^2}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2AB^2-AC^2=46\\2AC^2-AB^2=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4AB^2-2AC^2=92\\2AC^2-AB^2=-2\end{matrix}\right.\)

\(\Rightarrow3AB^2=90\)

\(\Rightarrow AB=\sqrt{30}\)

NV
27 tháng 3 2019

A B C D M H

\(d:x+y+2=0\Rightarrow\overrightarrow{n_d}=\left(1;1\right)\)

\(A\in AD\Rightarrow A\left(a;2a+1\right)\) ;\(B\in BM\Rightarrow B\left(b;-3\right)\)

Gọi H là trung điểm AB \(\Rightarrow H\left(\frac{a+b}{2};a-1\right)\)

Do H thuộc trung trực AB:

\(\Rightarrow\frac{a+b}{2}+a-1+2=0\Leftrightarrow3a+b+2=0\)

\(\overrightarrow{AB}=\left(b-a;-4-2a\right)\) mà AB vuông góc d

\(\Rightarrow\overrightarrow{AB}.\overrightarrow{n_d}=0\Leftrightarrow b-a-4-2a=0\Leftrightarrow3a-b+4=0\)

\(\left\{{}\begin{matrix}3a+b+2=0\\3a-b+4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(-1;-1\right)\\B\left(1;-3\right)\end{matrix}\right.\)

Phương trình BC: \(1\left(x-1\right)+2\left(y+3\right)=0\Leftrightarrow x+2y+5=0\)

\(\Rightarrow C\left(2c-5;-c\right)\Rightarrow M\left(c-3;\frac{-c-1}{2}\right)\)

\(M\in BM\Rightarrow\frac{-c-1}{2}+3=0\Leftrightarrow-c+5=0\Rightarrow c=5\Rightarrow C\left(5;-5\right)\)

NV
18 tháng 3 2021

Gọi G là giao điểm BM và CN. Đặt AB=c, AC=b

Ta có: \(BM^2=\dfrac{2\left(a^2+c^2\right)-b^2}{4}\) ; \(\Rightarrow BG^2=\left(\dfrac{2}{3}BM\right)^2=\dfrac{2\left(a^2+c^2\right)-b^2}{9}\)

\(CN^2=\dfrac{2\left(a^2+b^2\right)-c^2}{4}\Rightarrow CG^2=\dfrac{2\left(a^2+b^2\right)-c^2}{9}\)

Mặt khác \(BG^2+CG^2=BC^2\)

\(\Rightarrow\dfrac{2\left(a^2+c^2\right)-b^2}{9}+\dfrac{2\left(a^2+b^2\right)-c^2}{9}=a^2\)

\(\Rightarrow b^2+c^2=5a^2\)

Áp dụng định lý hàm cos:

\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{5a^2-a^2}{2bc}=\dfrac{2a^2}{bc}\Rightarrow bc=\dfrac{2a^2}{cos\alpha}\)

\(S_{ABC}=\dfrac{1}{2}bcsinA=\dfrac{1}{2}.\dfrac{2a^2}{cos\alpha}.sin\alpha=a^2.tan\alpha\)

NV
8 tháng 3 2023

Gọi G là trọng tâm tam giác \(\Rightarrow\) tọa độ G là nghiệm:

\(\left\{{}\begin{matrix}x+7y-10=0\\x-2y+2=0\end{matrix}\right.\) \(\Rightarrow G\left(\dfrac{2}{3};\dfrac{4}{3}\right)\)

Gọi D là trung điểm BC, theo tính chất trọng tâm:

\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AD}\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{3}\left(x_D-1\right)=-\dfrac{1}{3}\\\dfrac{2}{3}\left(y_D-3\right)=-\dfrac{5}{3}\\\end{matrix}\right.\) \(\Rightarrow D\left(\dfrac{1}{2};\dfrac{1}{2}\right)\)

Do B thuộc BM nên tọa độ có dạng: \(B\left(10-7b;b\right)\)

Do D là trung điểm BC \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_D-x_B=7b-9\\y_C=2y_D-y_B=1-b\end{matrix}\right.\) \(\Rightarrow C\left(7b-9;1-b\right)\)

Do C thuộc CN nên:

\(7b-9-2\left(1-b\right)+2=0\Rightarrow b=1\)

\(\Rightarrow B\left(3;1\right)\)

Biết tọa độ 2 điểm B; D thuộc BC, bây giờ có thể dễ dàng viết pt BC

13 tháng 3 2021

1.

Do A không thuộc hai đường trung tuyến đã cho nên giả sử đường trung tuyến xuất phát từ B, C lần lượt là \(2x-y+1=0;x+y-4=0\)

Trọng tâm G của tam giác có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}2x-y+1=0\\x+y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\Rightarrow G=\left(1;3\right)\)

Gọi M là trung điểm BC, ta có \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)

\(\Rightarrow\left\{{}\begin{matrix}1+3=\dfrac{2}{3}\left(x_M+2\right)\\3-3=\dfrac{2}{3}\left(y_M-3\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_M=4\\y_M=3\end{matrix}\right.\Rightarrow M=\left(4;3\right)\)

Gọi \(N=\left(m;2m+1\right)\) là trung điểm AC \(\Rightarrow C=\left(2m+2;4m-1\right)\)

Mà C lại thuộc CG nên \(2m+2+4m-1-4=0\Rightarrow m=\dfrac{1}{2}\)

\(\Rightarrow C=\left(3;1\right)\)

Phương trình đường thẳng BC:

\(\dfrac{x-4}{3-4}=\dfrac{y-3}{1-3}\Leftrightarrow2x-y-5=0\)

13 tháng 3 2021

2.

1.

Trọng tâm G của tam giác có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}x-5y+1=0\\x+y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\Rightarrow G=\left(\dfrac{2}{3};\dfrac{1}{3}\right)\)

Gọi I là trung điểm BC, ta có \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AI}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{3}-1=\dfrac{2}{3}\left(x_I-1\right)\\\dfrac{1}{3}-2=\dfrac{2}{3}\left(y_I-2\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_I=\dfrac{1}{2}\\y_I=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow I=\left(\dfrac{1}{2};-\dfrac{1}{2}\right)\)

Gọi \(M=\left(5m-1;m\right)\) \(\Rightarrow C=\left(10m-3;2m-2\right)\)

Mà C lại thuộc CN nên \(10m-3+2m-2-1=0\Rightarrow m=\dfrac{1}{2}\)

\(\Rightarrow C=\left(2;-1\right)\)

Phương trình đường thẳng BC:

\(\dfrac{x-2}{2-\dfrac{1}{2}}=\dfrac{y+1}{-1+\dfrac{1}{2}}\Leftrightarrow x+3y+1=0\)

20 tháng 11 2022

\(\overrightarrow{AB}\cdot\overrightarrow{CB}=4\)

=>AB*CB*cosB=4

=>AB*CB*AB/BC=4

=>BA^2=4

=>AB=2

\(\overrightarrow{AC}\cdot\overrightarrow{BC}=9\)

=>AC*BC*cosC=9

=>AC*BC*AC/BC=9

=>AC=3

=>\(BC=\sqrt{13}\)

Sửa đề: ΔABC cân tại A

AB=AC

=>1/2AB=1/2AC

=>AN=AM

Xét ΔANC và ΔAMB có

AN=AM
góc NAC chung

AC=AB

=>ΔANC=ΔAMB

=>CN=BM