Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
AB=AC(gt)⇒AB/2=AC/2
⇒BN=CM (do N và M lần lượt là trung điểm của AB và AC)
Xét tam giác BCN và tam giác CBM ta có:
BN=CM(cmt)BN=CM(cmt);NBCˆ=MCBˆNBC^=MCB^ (tam giác ABC cân); BC:chung
Do đó tam giác BCN=tam giác CBM(c.g.c)
=> CN=BM(cặp cạnh tương ứng)
=> Tứ giác BCMN là hình thang cân(do hai đường chéo bằng nhau)
a) Áp dụng định lí Pi - ta - go, ta có:
102 - 52 = 75 => AC = \(\sqrt{75}\)
Còn mấy phần kia mình hơi vội nên chưa lm đc thông cảm nhé
a. Vì tam giác ABC cân tại A nên đường cao cũng là đường trung tuyến
Do đó H là trung điểm của BC hay BH=HC=1/2BC=3cm
Áp dụng định lý Pytago trong tam giác ABH vuông tại H ta có AH2 + BH2 = AB2
suy ra AH2 + 32 = 52
=> AH = 4(cm)
b. Vì tam giác ABC cân tại A, AH là đường cao nên AH cũng là đường trung tuyến của tam giác ABC
Do đó A, G, H thẳng hàng
c. Vì tam giác ABC cân tại A, AH là đường cao nên AH cũng là phân giác góc A
suy ra góc BAG = góc CAG
Tam giác ABG và tam giác ACG có:
AB = AC
góc BAG = góc CAG
AG chung
Do đó tam giác ABG = tam giác ACG
Ta có: Tam giác ABC cân tại A => AB = AC
=>AB/2 = AC/2
=> NB=MC
Xét tam giác BNC và tam giác CMB có
NB = MC ( cmt)
góc B = góc C
BC cạnh chung
=> tam giác BNC = tam giác CMB ( cạnh - góc - cạnh )
Mệt quá câu A thôi nha !
H A B K C M I
a, Xét \(\Delta AHM\) và \(\Delta AKM\) có:
\(\widehat{AHM}=\widehat{AKM}=90^o\)
AM cạnh chung
\(\widehat{HAM}=\widehat{KAM}\) (vì AM là tia phân giác của \(\widehat{HAK}\))
\(\Rightarrow\Delta AHM=\Delta AKM\) (cạnh huyền - góc nhọn)
`=> AH = AK` (2 cạnh tương ứng) (1)
Ta có: \(\widehat{AMK}+\widehat{KAM}=90^o\) (vì \(\Delta AKM\) vuông tại K)
\(\widehat{KAM}+\widehat{BAM}=90^o\)
\(\Rightarrow\widehat{AMK}=\widehat{BAM}\)
Mà \(\widehat{AMK}=\widehat{AMB}\) (vì \(\Delta AHM=\Delta AKM\))
\(\Rightarrow\widehat{BAM}=\widehat{AMB}\)
\(\Rightarrow\Delta ABM\) cân tại B \(\Rightarrow AB=BM\) (2)
Từ (1), (2) ta có đpcm
b, Xét \(\Delta HIM\) và \(\Delta CKM\) có:
\(\widehat{HMI}=\widehat{CMK}\) (2 góc đối đỉnh)
HM = KM (vì \(\Delta AHM=\Delta AKM\))
\(\widehat{IHM}=\widehat{CKM}\left(=90^o\right)\)
\(\Rightarrow\Delta HIM=\Delta KCM\left(g.c.g\right)\)
`=> HI = CK` (2 cạnh tương ứng)
Mà AH = AK (cmt)
`=> AH + HI = AK + CK`
`=> AI = AC`
\(\Rightarrow\Delta ACI\) cân tại A
AM là đường phân giác của \(\Delta ACI\) cân tại A
`=> AM` cũng là đường cao
\(\Rightarrow AM\perp CI\) (3)
Vì AH = AK nên \(\Delta AHK\) cân tại A
\(\Rightarrow\widehat{AHK}=\dfrac{180^o-\widehat{CAI}}{2}\)
\(\Delta ACI\) cân tại A \(\Rightarrow\widehat{AIC}=\dfrac{180^o-\widehat{CAI}}{2}\)
\(\Rightarrow\widehat{AHK}=\widehat{AIC}\)
Mà 2 góc này ở vị trí đồng vị
`=>` HK // CI (4)
Từ (3), (4) ta có đpcm