Tính:
\(25x^4-16\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x\ge-1\\ PT\Leftrightarrow2\sqrt{x+1}+4\sqrt{x+1}-5\sqrt{x+1}=3\\ \Leftrightarrow\sqrt{x+1}=3\Leftrightarrow x+1=9\Leftrightarrow x=8\left(tm\right)\)
\(\left(5x-4\right)^2+3\left(16-25x^2\right)=0\)
\(\Leftrightarrow\left(5x-4\right)^2-3\left(25x^2-16\right)=0\)
\(\Leftrightarrow\left(5x-4\right)^2-3\left(5x-4\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\left(5x-4\right)\left[5x-4-3\left(5x+4\right)\right]=0\)
\(\Leftrightarrow\left(5x-4\right)\left(5x-4-15x-12\right)=0\)
\(\Leftrightarrow\left(5x-4\right)\left(-10x-16\right)=0\)
\(\Leftrightarrow5x-4=0\)hoặc \(-10x-16=0\)
\(\Leftrightarrow5x=4\) hoặc \(-2\left(5x+8\right)=0\)
\(\Leftrightarrow x=\frac{4}{5}\) hoặc \(5x+8=0\)
\(\Leftrightarrow x=\frac{4}{5}\)hoặc \(x=\frac{-8}{5}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\frac{-8}{5};\frac{4}{5}\right\}\)
Ta có: \(\left(5x-4\right)^2-3.\left(5x-4\right).\left(5x+4\right)=0\)
\(\Leftrightarrow\left(5x-4\right).\left[\left(5x-4\right)-3\left(5x+4\right)\right]=0\)
\(\Leftrightarrow\left(5x-4\right).\left(5x-4-15x-12\right)=0\)
\(\Leftrightarrow-2.\left(5x-4\right).\left(5x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\5x+8=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{5}\\x=\frac{-8}{5}\end{cases}}\)
Vậy \(S=\left\{\frac{4}{5};\frac{-8}{5}\right\}\)
x=24 nên x+1=25
C=x^4-x^3(x+1)+x^2(x+1)-x(x+1)+30
=x^4-x^4-x^3+x^3+x^2-x^2-x+30
=-x+30
=30-24
=6
ĐKXĐ: \(x\ge-1\)
\(\sqrt{25\left(x+1\right)}-\sqrt{16\left(x+1\right)}+\sqrt{9\left(x+1\right)}-\sqrt{4\left(x+1\right)}+\sqrt{x+1}=27\)
\(\Leftrightarrow5\sqrt{x+1}-4\sqrt{x+1}+3\sqrt{x+1}-2\sqrt{x+1}+\sqrt{x+1}=27\)
\(\Leftrightarrow3\sqrt{x+1}=27\)
\(\Leftrightarrow\sqrt{x+1}=9\)
\(\Rightarrow x+1=81\)
\(\Rightarrow x=80\) (thỏa mãn)
=>\(\sqrt{5x+1}\left(\sqrt{5}-6\sqrt{5}-\dfrac{1}{4}\right)=\dfrac{27\sqrt{5}}{4}\)
=>căn 5x+1=\(\dfrac{27\sqrt{5}}{28\sqrt{5}-1}\)
=>5x+1=0,96
=>5x=-0,04
=>x=-0,04/5=-0,008
a: 25x^2-16=(5x-4)(5x+4)
b: 16a^2-9b^4
=(4a-3b^2)(4a+3b^2)
c: (2x+5)^2-(2x-5)^2
=(2x+5-2x+5)(2x+5+2x-5)
=4x*10=40x
\(B=\sqrt{\left(5x-3\right)^2}+\sqrt{\left(5x-4\right)^2}\ge\left|5x-3\right|+\left|4-5x\right|\ge5x-3+4-5x=1\).
Dấu "=" xảy ra khi và chỉ khi \(3\le5x\le4\Leftrightarrow\dfrac{3}{5}\le x\le\dfrac{4}{5}\)
\(25x^4-16\)
\(=\left(5x^2\right)^2-4^2\)
\(=\left(5x^2-4\right)\left(5x^2+4\right)\)
\(25x^4-16\)
\(\left(5x^2\right)^2-4^2\)
\(\left(5x^2-4\right)-\left(5x^2+4\right)\)
\(#LTH\)