Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(5x-4\right)^2+3\left(16-25x^2\right)=0\)
\(\Leftrightarrow\left(5x-4\right)^2-3\left(25x^2-16\right)=0\)
\(\Leftrightarrow\left(5x-4\right)^2-3\left(5x-4\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\left(5x-4\right)\left[5x-4-3\left(5x+4\right)\right]=0\)
\(\Leftrightarrow\left(5x-4\right)\left(5x-4-15x-12\right)=0\)
\(\Leftrightarrow\left(5x-4\right)\left(-10x-16\right)=0\)
\(\Leftrightarrow5x-4=0\)hoặc \(-10x-16=0\)
\(\Leftrightarrow5x=4\) hoặc \(-2\left(5x+8\right)=0\)
\(\Leftrightarrow x=\frac{4}{5}\) hoặc \(5x+8=0\)
\(\Leftrightarrow x=\frac{4}{5}\)hoặc \(x=\frac{-8}{5}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\frac{-8}{5};\frac{4}{5}\right\}\)
Ta có: \(\left(5x-4\right)^2-3.\left(5x-4\right).\left(5x+4\right)=0\)
\(\Leftrightarrow\left(5x-4\right).\left[\left(5x-4\right)-3\left(5x+4\right)\right]=0\)
\(\Leftrightarrow\left(5x-4\right).\left(5x-4-15x-12\right)=0\)
\(\Leftrightarrow-2.\left(5x-4\right).\left(5x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\5x+8=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{5}\\x=\frac{-8}{5}\end{cases}}\)
Vậy \(S=\left\{\frac{4}{5};\frac{-8}{5}\right\}\)
x=24 nên x+1=25
C=x^4-x^3(x+1)+x^2(x+1)-x(x+1)+30
=x^4-x^4-x^3+x^3+x^2-x^2-x+30
=-x+30
=30-24
=6
a: 25x^2-16=(5x-4)(5x+4)
b: 16a^2-9b^4
=(4a-3b^2)(4a+3b^2)
c: (2x+5)^2-(2x-5)^2
=(2x+5-2x+5)(2x+5+2x-5)
=4x*10=40x
b. sửa đề
\(6x^4+25x^3+12x-25x^2+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-3\\x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy........
Bài 1 : Giải phương trình
a) (x + 3)4 + (x + 5)4 = 16
Đặt : x + 3 = t
=> x + 5 = x + 3 + 2 = t + 2
Thay x + 3 = t và x + 5 = t + 2 vào phương trình, ta có :
t4 + (t + 2)4 = 16
<=> 2t4 + 8t3 + 24t2 + 32t + 16 = 16
<=> 2(t4 + 4t3 + 12t2 + 16t) = 0
<=> t4 + 4t3 + 12t2 + 16t = 0
<=> (t + 2) . t . (t2 + 2y + 4) = 0
TH1 : t = 0
TH2 : t + 2 = 0 <=> t = -2
TH3 : t2 + 2y + 4 = 0 (vô nghiệm => loại)
Nên t = 0 hoặc t = -2
hay x + 3 = -2 hoặc x + 3 = 0
<=> x = -5 hoặc x = -3
\(S=\left\{-5;-3\right\}\)
b) 6x4 + 25x3 + 12x2 - 25x + 6 = 0
<=> 6x4 + 12x3 + 13x3 + 26x2 - 14x2 - 28x + 3x + 6 = 0
<=> 6x3 (x + 2) + 13x2 (x + 2) - 14x (x + 2) + 3(x + 2) = 0
<=> (x + 2)(6x3 + 13x2 - 14x + 3) = 0
<=> (x + 2)(6x3 + 18x2 - 5x2 - 15x + x + 3) = 0
\(\Leftrightarrow\left(x+2\right)[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)]=0\)
<=> (x + 2)(x + 3) (6x2 - 5x + 1) = 0
<=> (x + 2)(x + 3)(2x - 1)(3x - 1) = 0
TH1 : x + 2 = 0 <=> x = -2
TH2 : x + 3 = 0 <=> x = -3
TH3 : 2x - 1 = 0 <=> 2x = 1 <=> x = \(\dfrac{1}{2}\)
TH4 : 3x - 1 = 0 <=> 3x = 1 <=> 3x = \(\dfrac{1}{3}\)
\(S=\left\{-2;-3;\dfrac{1}{2};\dfrac{1}{3}\right\}\)
`a)1/[x-5x^2]-[25x-15]/[25x^2-1]`
`=[-(5x+1)-x(25x-15)]/[x(5x-1)(5x+1)]`
`=[-5x-1-25x^2+15x]/[x(5x-1)(5x+1)]`
`=[-25x^2+10x-1]/[x(5x-1)(5x+1)]`
`=[-(5x-1)^2]/[x(5x-1)(5x+1)]`
`=[1-5x]/[x(5x+1)]`
________________________________________________-
`b)(-1/[x^2-4x]+2/[16-x^2]-[-1]/[4x+16]):1/[4x]`
`=[-4(x+4)-8x+x(x-4)]/[4x(x-4)(x+4)].4x`
`=[-4x-16-8x+x^2-4x]/[(x-4)(x+4)]`
`=[x^2-16x-16]/[x^2-16]`
a) \(\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(x^2-1=0\Rightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c) \(x^2-9=0\Rightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
d) \(\Rightarrow\left(2x-4\right)\left(2x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
2) \(\Rightarrow\left(5x-3\right)\left(5x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
\(25x^2-16=0=>\left(5x\right)^2-4^2=0=>\left(5x-4\right)\left(5x+4\right)=0\)
\(=>\orbr{\begin{cases}5x-4=0\\5x+4=0\end{cases}=>\orbr{\begin{cases}5x=4=>x=\frac{4}{5}\\5x=-4=>x=-\frac{4}{5}\end{cases}}}\)
Lời giải:
\((5x-4)^2+(16-25x^2)+(5x-4)(3x+2)\)
\(=(5x-4)^2-[(5x)^2-4^2]+(5x-4)(3x+2)\)
\(=(5x-4)^2-(5x-4)(5x+4)+(5x-4)(3x+2)\)
\(=(5x-4)[(5x-4)-(5x+4)+(3x+2)]\)
\(=(5x-4)(3x-6)=3(5x-4)(x-2)\)
\(25x^4-16\)
\(=\left(5x^2\right)^2-4^2\)
\(=\left(5x^2-4\right)\left(5x^2+4\right)\)
\(25x^4-16\)
\(\left(5x^2\right)^2-4^2\)
\(\left(5x^2-4\right)-\left(5x^2+4\right)\)
\(#LTH\)