Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(5x-4\right)^2+3\left(16-25x^2\right)=0\)
\(\Leftrightarrow\left(5x-4\right)^2-3\left(25x^2-16\right)=0\)
\(\Leftrightarrow\left(5x-4\right)^2-3\left(5x-4\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\left(5x-4\right)\left[5x-4-3\left(5x+4\right)\right]=0\)
\(\Leftrightarrow\left(5x-4\right)\left(5x-4-15x-12\right)=0\)
\(\Leftrightarrow\left(5x-4\right)\left(-10x-16\right)=0\)
\(\Leftrightarrow5x-4=0\)hoặc \(-10x-16=0\)
\(\Leftrightarrow5x=4\) hoặc \(-2\left(5x+8\right)=0\)
\(\Leftrightarrow x=\frac{4}{5}\) hoặc \(5x+8=0\)
\(\Leftrightarrow x=\frac{4}{5}\)hoặc \(x=\frac{-8}{5}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\frac{-8}{5};\frac{4}{5}\right\}\)
Ta có: \(\left(5x-4\right)^2-3.\left(5x-4\right).\left(5x+4\right)=0\)
\(\Leftrightarrow\left(5x-4\right).\left[\left(5x-4\right)-3\left(5x+4\right)\right]=0\)
\(\Leftrightarrow\left(5x-4\right).\left(5x-4-15x-12\right)=0\)
\(\Leftrightarrow-2.\left(5x-4\right).\left(5x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\5x+8=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{5}\\x=\frac{-8}{5}\end{cases}}\)
Vậy \(S=\left\{\frac{4}{5};\frac{-8}{5}\right\}\)
a) \(\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(x^2-1=0\Rightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c) \(x^2-9=0\Rightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
d) \(\Rightarrow\left(2x-4\right)\left(2x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
2) \(\Rightarrow\left(5x-3\right)\left(5x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
a) \(x^2-2x=0\)
\(x\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
b) \(\left(3x-1\right)^2-16=0\)
\(\left(3x-1\right)^2-4^2=0\)
\(\left(3x-1-4\right)\left(3x-1+4\right)=0\)
\(\left(3x-5\right)\left(3x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-5=0\\3x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}}\)
c) \(x^2-25x=0\)
\(x\left(x-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-25=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=25\end{cases}}}\)
d) \(\left(4x-1\right)^2-9=0\)
\(\left(4x-1\right)^2-3^2=0\)
\(\left(4x-1-3\right)\left(4x-1+3\right)=0\)
\(\left(4x-4\right)\left(4x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x-4=0\\4x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}}}\)
a) \(x^2-2x=0\)
\(x.\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
vậy..
b) \(\left(3x-1\right)^2-16=0\)
\(\left(3x-1\right)^2=16\)
\(\left(3x-1\right)^2=4^2=\left(-4\right)^2\)
\(\Rightarrow\orbr{\begin{cases}3x-1=4\\3x-1=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}}\)
vậy ...
c) \(x^2-25x=0\)
\(x.\left(x-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-25=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=25\end{cases}}}\)
vậy ....
d) \(\left(4x-1\right)^2-9=0\)
\(\left(4x-1\right)^2=3^2=\left(-3\right)^2\)
\(\Rightarrow\orbr{\begin{cases}4x-1=3\\4x-1=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)
vậy ...
b. sửa đề
\(6x^4+25x^3+12x-25x^2+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-3\\x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy........
Bài 1 : Giải phương trình
a) (x + 3)4 + (x + 5)4 = 16
Đặt : x + 3 = t
=> x + 5 = x + 3 + 2 = t + 2
Thay x + 3 = t và x + 5 = t + 2 vào phương trình, ta có :
t4 + (t + 2)4 = 16
<=> 2t4 + 8t3 + 24t2 + 32t + 16 = 16
<=> 2(t4 + 4t3 + 12t2 + 16t) = 0
<=> t4 + 4t3 + 12t2 + 16t = 0
<=> (t + 2) . t . (t2 + 2y + 4) = 0
TH1 : t = 0
TH2 : t + 2 = 0 <=> t = -2
TH3 : t2 + 2y + 4 = 0 (vô nghiệm => loại)
Nên t = 0 hoặc t = -2
hay x + 3 = -2 hoặc x + 3 = 0
<=> x = -5 hoặc x = -3
\(S=\left\{-5;-3\right\}\)
b) 6x4 + 25x3 + 12x2 - 25x + 6 = 0
<=> 6x4 + 12x3 + 13x3 + 26x2 - 14x2 - 28x + 3x + 6 = 0
<=> 6x3 (x + 2) + 13x2 (x + 2) - 14x (x + 2) + 3(x + 2) = 0
<=> (x + 2)(6x3 + 13x2 - 14x + 3) = 0
<=> (x + 2)(6x3 + 18x2 - 5x2 - 15x + x + 3) = 0
\(\Leftrightarrow\left(x+2\right)[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)]=0\)
<=> (x + 2)(x + 3) (6x2 - 5x + 1) = 0
<=> (x + 2)(x + 3)(2x - 1)(3x - 1) = 0
TH1 : x + 2 = 0 <=> x = -2
TH2 : x + 3 = 0 <=> x = -3
TH3 : 2x - 1 = 0 <=> 2x = 1 <=> x = \(\dfrac{1}{2}\)
TH4 : 3x - 1 = 0 <=> 3x = 1 <=> 3x = \(\dfrac{1}{3}\)
\(S=\left\{-2;-3;\dfrac{1}{2};\dfrac{1}{3}\right\}\)
a) \(25x^2-9=0\)
\(\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-3=0\Leftrightarrow x=0,6\\5x+3=0\Leftrightarrow x=-0,6\end{matrix}\right.\)
b) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\Leftrightarrow x^2+8x+16-x^2+1=16\)
\(\Leftrightarrow8x=-1\)
\(\Leftrightarrow x=-0,125\)
c) \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow5x^2+2x+10-5x^2+245=0\)
\(\Leftrightarrow2x=-255\)
\(\Leftrightarrow x=-127,5\)
\(a,\Leftrightarrow\left(4-5x\right)\left(4+5x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+1-2\right)\left(x+1+2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\\ c,\Leftrightarrow\left(3x+1-2x\right)\left(3x+1+2x\right)=0\\ \Leftrightarrow\left(x+1\right)\left(5x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{1}{5}\end{matrix}\right.\\ d,Sửa:\left(4x+1\right)^2-\left(x-2\right)^2=0\\ \Leftrightarrow\left(4x+1-x+2\right)\left(4x+1+x-2\right)=0\\ \Leftrightarrow\left(3x+3\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{5}\end{matrix}\right.\\ e,\Leftrightarrow\left(2x+1-x-3\right)\left(2x+1+x+3\right)=0\\ \Leftrightarrow\left(x-2\right)\left(3x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
a) Ta có: \(x^2-16=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
Vậy: S={4;-4}
b) Ta có: \(x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-25\right)=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
Vậy: S={0;5;-5}
c) Ta có: \(x^2+4x=-4\)
\(\Leftrightarrow x^2+4x+4=0\)
\(\Leftrightarrow\left(x+2\right)^2=0\)
\(\Leftrightarrow x+2=0\)
hay x=-2
Vậy: S={-2}
d) Ta có: \(x^3+2x=0\)
\(\Leftrightarrow x\left(x^2+2\right)=0\)
mà \(x^2+2>0\forall x\)
nên x=0
Vậy: S={0}
\(25x^2-16=0=>\left(5x\right)^2-4^2=0=>\left(5x-4\right)\left(5x+4\right)=0\)
\(=>\orbr{\begin{cases}5x-4=0\\5x+4=0\end{cases}=>\orbr{\begin{cases}5x=4=>x=\frac{4}{5}\\5x=-4=>x=-\frac{4}{5}\end{cases}}}\)