K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2021

\(\left(y^3-125x^3\right):\left(10x-2y\right)\)

\(=\left(y^3-\left(5x\right)^3\right):2:\left(5x-y\right)\)

\(=\left(y-5x\right)\left(y^2+5xy+25x^2\right):2:\left(5x-y\right)\)

\(=\frac{-y^2-5xy-25x^2}{2}\)

3 tháng 4 2018

\(a,\left(x^2+y^2-5\right)^2-4x^2y^2-16xy-16\)

\(=\left(x^2+y^2-5\right)^2-4\left(x^2y^2-4xy-4\right)\)

\(=\left(x^2+y^2-5\right)^2-4\left(xy+2\right)^2\)

\(=\left(x^2+y^2-5\right)^2-\left[2xy+4\right]^2\)

\(=\left(x^2+y^2-5+2xy+4\right)\left(x^2+y^2-5-2xy-4\right)\)

\(=\left[\left(x^2+y^2+2xy\right)-1\right]\left[\left(x^2+y^2-2xy\right)-9\right]\)

\(=\left[\left(x+y\right)^2-1\right]\left[\left(x-y\right)^2-9\right]\)

\(=\left(x+y-1\right)\left(x+y+1\right)\left(x-y-3\right)\left(x-y+3\right)\)

\(b,x^3+5x^2+8x+4\)

\(=x^3+x^2+4x^2+8x+4\)

\(=x^2\left(x+1\right)+4\left(x^2+2x+1\right)\)

\(=x^2\left(x+1\right)+4\left(x+1\right)^2\)

\(=\left(x+1\right)\left[\left(x^2+4\right)\left(x+1\right)\right]\)

\(=\left(x+1\right)\left(x^2+4x+4\right)\)

\(=\left(x+1\right)\left(x+2\right)^2\)

\(c,x^3-6x^2-x+30\)

\(=x^3-5x^2-x^2+5x-6x+30\)

\(=x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2-x-6\right)\)

\(=\left(x-5\right)\left[x^2+2x-3x-6\right]\)

\(=\left(x-5\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]\)

\(=\left(x-5\right)\left(x-3\right)\left(x+3\right)\)

\(d,125x^3-10x^2+2x-1\)

\(=\left(125x^3-1\right)-\left(10x^2-2x\right)\)

\(=\left(5x-1\right)\left(25x^2+5x+1\right)-2x\left(5x-1\right)\)

\(=\left(5x-1\right)\left(25x^2+5x+1-2x\right)\)

\(=\left(5x-1\right)\left(25x^2+3x+1\right)\)

30 tháng 10 2017

Bạn ơi, có lẽ đề bài mình cần sửa 1 chút.
Mình sửa lại thành 125x^3 - 10x^2 + 2x -1 nhé.
Giải: \(125x^3-10x^2+2x-1\)

= \(125x^3-25x^2+15x^2-3x+5x-1\)

= \(25x^2\left(5x-1\right)+3x\left(5x-1\right)+\left(5x-1\right)\)

=\(\left(5x-1\right)\left(25x^2+3x+1\right)\)

_Chúc bạn học tốt!_

AH
Akai Haruma
Giáo viên
8 tháng 8 2020

Câu 2:

$-B=10x^2+y^2-6xy-10x+2y+3$

$=(9x^2+y^2-6xy)+x^2-10x+2y+3$
$=(3x-y)^2-2(3x-y)+1+(x^2-4x+4)-2$

$=(3x-y-1)^2+(x-2)^2-2$

$\geq 0+0-2=-2$

$\Rightarrow B\leq 2$

Vậy GTLN của $B$ là $2$. Giá trị này xác định tại $(3x-y-1)^2=(x-2)^2=0$

$\Leftrightarrow (x,y)=(2,5)$

AH
Akai Haruma
Giáo viên
8 tháng 8 2020

Câu 1:

$A=-4x^2-y^2-2x+2y+1$

$-A=4x^2+y^2+2x-2y-1$

$=(4x^2+2x+\frac{1}{2^2})+(y^2-2y+1)-\frac{9}{4}$

$=(2x+\frac{1}{2})^2+(y-1)^2-\frac{9}{4}$

$\geq 0+0-\frac{9}{4}=\frac{-9}{4}$

$\Rightarrow A\leq \frac{9}{4}$

Vậy GTLN của $A$ là $\frac{9}{4}$

Giá trị này đạt được tại $(2x+\frac{1}{2})^2=(y-1)^2=0$

$\Leftrightarrow (x,y)=(\frac{-1}{4},1)$

17 tháng 6 2015

c, =(5x)^3 + (y^2)^ 3 = (5x+y^2)(25x^2 - 5xy^2 + y^4)

d, = (0,5.(a+1))^3-1^3 = ( 0,5(a+1) - 1 ) ( 0,25(a+1) ^2 +a,5(a+1) + 1)

e,2x( x+ 1 ) + 2(x+ 1 ) = 2(x+1)(x+1) = 2(x+1)^2

g, y^2 (x^2 + y) - zx^2 - zy = x^2.y^2 - z.x^2 + y^3 - zy = x^2 (y^2 - z) + y (y^2 -z) = (x^2 +y) (y^2 -z)

h,4.x(x-2y) + 8.y(2y -x) = 4x( x- 2 y ) -8 (x - 2y) = (4x - 8) (x-2y)=4(x-2)(x-2y)

k,=(x+1)(3x(x+1)-5x+7) =(x+1) (3x^2 +3x - 5x + 7)

15 tháng 7 2018

3) \(A=2017.2019=\left(2018+1\right)\left(2018-1\right)=2018^2-1\)

\(\Rightarrow A< B\)

15 tháng 7 2018

Bài 1:

a)  \(x^2+2y^2+2xy-2y+2=0\)

\(\Leftrightarrow\)\(\left(x+y\right)^2+\left(y-1\right)^2+1=0\)

Ta thấy  \(VT>0\)

suy ra phương trình vô nghiệm

b)  \(x^2+y^2-4x+4=0\)

\(\Leftrightarrow\)\( \left(x-2\right)^2+y^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x-2=0\\y=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\y=0\end{cases}}\)

Vậy...

Bài 2:

a)  \(8y^3-125x^3=\left(2y-5x\right)\left(4y^2+10xy+25y^2\right)\)

b)  \(a^6-b^6=\left(a^3-b^3\right)\left(a^3+b^3\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)\)

c)  \(x^4-1=\left(x^2-1\right)\left(x^2+1\right)=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)

Bài 3:

\(A=2017.2019=\left(2018-1\right)\left(2018+1\right)=2018^2-1< 2018^2=B\)

Vậy  \(A< B\)

22 tháng 7 2017

1. \(125x^3+y^6=\left(5x\right)^3+\left(y^2\right)^3\)

\(=\left(5x+y^2\right)\left[\left(5x\right)^2-5x.y^2+\left(y^2\right)^2\right]\)

\(=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)

2. \(4x\left(x-2y\right)+8y\left(2y-x\right)\)

\(=4x\left(x-2y\right)-8y\left(x-2y\right)\)

\(=\left(x-2y\right)\left(4x-8y\right)\)

3. \(25\left(x-y\right)^2-16\left(x+y\right)^2\)

\(=\left[5\left(x-y\right)\right]^2-\left[4\left(x+y\right)\right]^2\)

\(=\left[5\left(x-y\right)-4\left(x+y\right)\right]\left[5\left(x-y\right)+4\left(x+y\right)\right]\)

\(=\left(5x-5y-4x-4y\right)\left(5x-5y+4x+4y\right)\)

\(=\left(x-9y\right)\left(9x-y\right)\)

4. \(x^4-x^3-x^2+1\)

\(=x^3\left(x-1\right)-\left(x^2-1\right)\)

\(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x^3-x-1\right)\)

5. \(a^3x-ab+b-x\)

\(=a^3x-x-ab+b\)

\(=x\left(a^3-1\right)-b\left(a-1\right)\)

\(=x\left(a-1\right)\left(a^2+a+1\right)-b\left(a-1\right)\)

\(=\left(a-1\right)\left[x\left(a^2+a+1\right)-b\right]\)

6. \(x^3-64=x^3-4^3\)

\(=\left(x-4\right)\left(x^2+4x+16\right)\)

7. \(0,125\left(a+1\right)^3-1\)

\(=\left[0,5\left(a+1\right)\right]^3-1^3\)

\(=\left[0,5\left(a+1\right)-1\right]\left\{\left[0,5\left(a+1\right)\right]^2+\left[0,5\left(a+1\right).1\right]+1^2\right\}\)

\(=\left[0,5\left(a+1-2\right)\right]\left[0,25a^2+0,5a+0,25+0,5a+0,5+1\right]\)

\(=\left[0,5\left(a-1\right)\right]\left(0,25a^2+a+1,75\right)\)

8. \(9\left(x+5\right)^2-\left(x-7\right)^2\)

\(=\left[3\left(x+5\right)\right]^2-\left(x-7\right)^2\)

\(=\left(3x+15-x+7\right)\left(3x+15+x-7\right)\)

\(=\left(2x+22\right)\left(4x+8\right)\)

9. \(49\left(y-4\right)^2-9\left(y+2\right)^2\)

\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)

\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)

\(=\left(4y-34\right)\left(10y-22\right)\)

10. \(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(xy-1\right)\)

11. \(x^3+3x^2+3x+1-27z^3\)

\(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

12. \(x^2-y^2-x+y=\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-1\right)\)

a) Ta có: \(x^2+2x+1\)

\(=x^2+2\cdot x\cdot1+1^2\)

\(=\left(x+1\right)^2\)

b) Ta có: \(1-2y+y^2\)

\(=y^2-2\cdot y\cdot1+1^2\)

\(=\left(y-1\right)^2\)

c) Ta có: \(x^3-3x^2+3x-1\)

\(=x^3-x^2-2x^2+2x+x-1\)

\(=x^2\left(x-1\right)-2x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-2x+1\right)\)

\(=\left(x-1\right)^3\)

d) Ta có: \(27+27x+9x^2+x^3\)

\(=x^3+3x^2+6x^2+18x+9x+27\)

\(=x^2\left(x+3\right)+6x\left(x+3\right)+9\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2+6x+9\right)\)

\(=\left(x+3\right)^3\)

e) Ta có: \(8-125x^3\)

\(=2^3-\left(5x\right)^3\)

\(=\left(2-5x\right)\left(4+10x+25x^2\right)\)

f) Ta có: \(64x^3+\frac{1}{8}\)

\(=\left(4x\right)^3+\left(\frac{1}{2}\right)^3\)

\(=\left(4x+\frac{1}{2}\right)\left(16x^2-2x+\frac{1}{4}\right)\)

g) Ta có: \(1-x^2y^4\)

\(=1^2-\left(xy^2\right)^2\)

\(=\left(1-xy^2\right)\left(1+xy^2\right)\)

16 tháng 8 2020

a) \(x^2+2x+1=x^2+2x.1+1^2=\left(x+1\right)^2\)

b) \(1-2y+y^2=1^2-2y.1+y^2=\left(1-y\right)^2\)

c) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)

d) \(27+27x+9x^2+x^3=3^3+3.3^2x+3.3x^2+x^3=\left(3+x\right)^3\)

e) \(8-125x^3=2^3-\left(5x\right)^3=\left(2-5x\right)\left[2^2+2.5x+\left(5x\right)^2\right]=\left(2-5x\right)\left(4+10x+25x^2\right)\)

f) \(64x^3+\frac{1}{8}=\left(4x\right)^3+\left(\frac{1}{2}\right)^3=\left(4x+\frac{1}{2}\right)\left[\left(4x\right)^2-4x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]=\left(4x+\frac{1}{2}\right)\left(16x^2-2x+\frac{1}{4}\right)\)

Ko chắc ạ!