K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(x^2+2x+1\)

\(=x^2+2\cdot x\cdot1+1^2\)

\(=\left(x+1\right)^2\)

b) Ta có: \(1-2y+y^2\)

\(=y^2-2\cdot y\cdot1+1^2\)

\(=\left(y-1\right)^2\)

c) Ta có: \(x^3-3x^2+3x-1\)

\(=x^3-x^2-2x^2+2x+x-1\)

\(=x^2\left(x-1\right)-2x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-2x+1\right)\)

\(=\left(x-1\right)^3\)

d) Ta có: \(27+27x+9x^2+x^3\)

\(=x^3+3x^2+6x^2+18x+9x+27\)

\(=x^2\left(x+3\right)+6x\left(x+3\right)+9\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2+6x+9\right)\)

\(=\left(x+3\right)^3\)

e) Ta có: \(8-125x^3\)

\(=2^3-\left(5x\right)^3\)

\(=\left(2-5x\right)\left(4+10x+25x^2\right)\)

f) Ta có: \(64x^3+\frac{1}{8}\)

\(=\left(4x\right)^3+\left(\frac{1}{2}\right)^3\)

\(=\left(4x+\frac{1}{2}\right)\left(16x^2-2x+\frac{1}{4}\right)\)

g) Ta có: \(1-x^2y^4\)

\(=1^2-\left(xy^2\right)^2\)

\(=\left(1-xy^2\right)\left(1+xy^2\right)\)

16 tháng 8 2020

a) \(x^2+2x+1=x^2+2x.1+1^2=\left(x+1\right)^2\)

b) \(1-2y+y^2=1^2-2y.1+y^2=\left(1-y\right)^2\)

c) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)

d) \(27+27x+9x^2+x^3=3^3+3.3^2x+3.3x^2+x^3=\left(3+x\right)^3\)

e) \(8-125x^3=2^3-\left(5x\right)^3=\left(2-5x\right)\left[2^2+2.5x+\left(5x\right)^2\right]=\left(2-5x\right)\left(4+10x+25x^2\right)\)

f) \(64x^3+\frac{1}{8}=\left(4x\right)^3+\left(\frac{1}{2}\right)^3=\left(4x+\frac{1}{2}\right)\left[\left(4x\right)^2-4x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]=\left(4x+\frac{1}{2}\right)\left(16x^2-2x+\frac{1}{4}\right)\)

Ko chắc ạ!

27 tháng 8 2023

a) \(\left(x+2y\right)^2-\left(x-y\right)^2=\left(x+2y+x-y\right)\left(x+2y-x+y\right)\)

\(=\left(2x+y\right).3y\)

b) \(\left(x+1\right)^3+\left(x-1\right)^3\)

\(=\left(x+1+x-1\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]\)

\(=2x\left[\left(x+1\right)^2-\left(x^2-1\right)+\left(x-1\right)^2\right]\)

c) \(9x^2-3x+2y-4y^2\)

\(=9x^2-4y^2-3x+2y\)

\(=\left(3x-2y\right)\left(3x+2y\right)-\left(3x-2y\right)\)

\(=\left(3x-2y\right)\left[3x+2y-1\right]\)

d) \(4x^2-4xy+2x-y+y^2\)

\(=4x^2-4xy+y^2+2x-y\)

\(=\left(2x-y\right)^2+2x-y\)

\(=\left(2x-y\right)\left(2x-y+1\right)\)

e) \(x^3+3x^2+3x+1-y^3\)

\(=\left(x+1\right)^3-y^3\)

\(=\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2\right]\)

g) \(x^3-2x^2y+xy^2-4x\)

\(=x\left(x^2-2xy+y^2\right)-4x\)

\(=x\left(x-y\right)^2-4x\)

\(=x\left[\left(x-y\right)^2-4\right]\)

\(=x\left(x-y+2\right)\left(x-y-2\right)\)

27 tháng 8 2023

a) (x + 2y)² - (x - y)²

= (x + 2y - x + y)(x + 2y + x - y)

= 3y(2x + y)

b) (x + 1)³ + (x - 1)³

= (x + 1 + x - 1)[(x + 1)² - (x + 1)(x - 1) + (x - 1)²]

= 2x(x² + 2x + 1 - x² + 1 + x² - 2x + 1)

= 2x(x² + 3)

c) 9x² - 3x + 2y - 4y²

= (9x² - 4y²) - (3x - 2y)

= (3x - 2y)(3x + 2y) - (3x - 2y)

= (3x - 2y)(3x + 2y - 1)

d) 4x² - 4xy + 2x - y + y²

= (4x² - 4xy + y²) + (2x - y)

= (2x - y)² + (2x - y)

= (2x - y)(2x - y + 1)

e) x³ + 3x² + 3x + 1 - y³

= (x³ + 3x² + 3x + 1) - y³

= (x + 1)³ - y³

= (x + 1 - y)[(x + 1)² + (x + 1)y + y²]

= (x - y + 1)(x² + 2x + 1 + xy + y + y²)

g) x³ - 2x²y + xy² - 4x

= x(x² - 2xy + y² - 4)

= x[(x² - 2xy + y²) - 4]

= x[(x - y)² - 2²]

= x(x - y - 2)(x - y + 2)

NV
15 tháng 12 2020

a.

\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)

b.

\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)

c.

\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)

\(=\left(x+3\right)^3\)

d.

\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)

e.

\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-5\right)\)

f.

\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)

1 tháng 7 2021

g. 10x(x-y)-6y(y-x)

=10x(x-y)+6y(x-y)

=(x-y)(10x+6y)

h.x2-4x-5

=(x-5)(x+1)

i.x4-y= (x2-y2)(x2+y2)

 

 

9 tháng 12 2023

a) x² - 9

= x² - 3²

= (x - 3)(x + 3)

b) 4x² - 1

= (2x)² - 1²

= (2x - 1)(2x + 1)

c) x⁴ - 16

= (x²)² - 4²

= (x² - 4)(x² + 4)

= (x² - 2²)(x² + 4)

= (x - 2)(x + 2)(x + 4)

d) x² - 4x + 4

= x² - 2.x.2 + 2²

= (x - 2)²

e) x³ - 8

= x³ - 2³

= (x - 2)(x² + 2x + 4)

f) x³ + 3x² + 3x + 1

= x³ + 3.x².1 + 3.x.1² + 1³

= (x + 1)³

3 tháng 7 2023

đề bài của bài này là tính thuii ạ

3 tháng 7 2023

a) \(x^3+3x^2+3x+1=x^2+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=\left(x-1\right)^3\)

b) \(x^2+6x+9=x^2+2\cdot3\cdot x+3^2=\left(x+3\right)^2\)

c) \(-x^3+9x^2-27x+27\)

\(=-\left(x^3-9x^2+27x-27\right)\)

\(=-\left(x^3-3\cdot3\cdot x^2+3\cdot3^2\cdot x-3^3\right)=-\left(x-3\right)^3\)

d) \(x^2+4x+4=x^2+2\cdot2\cdot x+2^2=\left(x+2\right)^2\)

k) \(10x-25-x^2=-x^2+10x-25=-\left(x^2-10x+25\right)\)

\(=-\left(x^2-2\cdot5\cdot x+5^2\right)=-\left(x-5\right)^2\)

f) \(\left(x+y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left[\left(x-y\right)-3x\right]\left[\left(x-y\right)+3x\right]\)

\(=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)

9 tháng 12 2023

Bài 3

a) x² + 10x + 25

= x² + 2.x.5 + 5²

= (x + 5)²

b) 8x - 16 - x²

= -(x² - 8x + 16)

= -(x² - 2.x.4 + 4²)

= -(x - 4)²

c) x³ + 3x² + 3x + 1

= x³ + 3.x².1 + 3.x.1² + 1³

= (x + 1)³

d) (x + y)² - 9x²

= (x + y)² - (3x)²

= (x + y - 3x)(x + y + 3x)

= (y - 2x)(4x + y)

e) (x + 5)² - (2x - 1)²

= (x + 5 - 2x + 1)(x + 5 + 2x - 1)

= (6 - x)(3x + 4)

9 tháng 12 2023

Bài 4

a) x² - 9 = 0

x² = 9

x = 3 hoặc x = -3

b) (x - 4)² - 36 = 0

(x - 4 - 6)(x - 4 + 6) = 0

(x - 10)(x + 2) = 0

x - 10 = 0 hoặc x + 2 = 0

*) x - 10 = 0

x = 10

*) x + 2 = 0

x = -2

Vậy x = -2; x = 10

c) x² - 10x = -25

x² - 10x + 25 = 0

(x - 5)² = 0

x - 5 = 0

x = 5

d) x² + 5x + 6 = 0

x² + 2x + 3x + 6 = 0

(x² + 2x) + (3x + 6) = 0

x(x + 2) + 3(x + 2) = 0

(x + 2)(x + 3) = 0

x + 2 = 0 hoặc x + 3 = 0

*) x + 2 = 0

x = -2

*) x + 3 = 0

x = -3

Vậy x = -3; x = -2

8 tháng 9 2023

a) \(4x^2-16+\left(3x+12\right)\left(4-2x\right)\)

\(=\left(2x-4\right)\left(2x+4\right)-3\left(x+4\right)\left(2x-4\right)\)

\(=\left(2x-4\right)\left(2x+4-3x-12\right)\)

\(=-\left(2x-4\right)\left(x+8\right)\)

b) \(x^3+x^2y-15x-15y\)

\(=x^2\left(x+y\right)-15\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-15\right)\)

c) \(3\left(x+8\right)-x^2-8x\)

\(=3\left(x+8\right)-x\left(x+8\right)\)

\(=\left(x+8\right)\left(3-x\right)\)

d) \(x^3-3x^2+1-3x\)

\(=x^3+1-3x^2-3x\)

\(=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1-3x\right)\)

\(=\left(x+1\right)\left(x^2-4x+1\right)\)

d) \(5x^2-5y^2-20x+20y\)

\(=5\left(x^2-y^2\right)-20\left(x-y\right)\)

\(=5\left(x-y\right)\left(x+y\right)-20\left(x-y\right)\)

\(=5\left(x-y\right)\left(x+y-4\right)\)

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$

10 tháng 10 2021

a) \(=\left(x-2\right)^2\)

b) \(=\left(2x+1\right)^2\)

c) \(=\left(4x-3y\right)\left(4x+3y\right)\)

d) \(=\left(4-x-3\right)\left(4+x+3\right)=\left(1-x\right)\left(x+7\right)\)

e) \(=\left(2x-3x+1\right)\left(2x+3x-1\right)=\left(1-x\right)\left(5x-1\right)\)

f) \(=\left(x-y\right)\left(x^2+xy+y^2\right)\)

g) \(=\left(x+3\right)\left(x^2-3x+9\right)\)

h) \(=\left(x+2\right)^3\)

i) \(=\left(1-x\right)^3\)

10 tháng 10 2021

a/ $=(x-2)^2$

b/ $=(2x+1)^2$

c/ $=(4x-3y)(4x+3y)$

d/ $=(1-x)(x+7)$

e/ $=(-x+1)(5x-1)$

f/ $=(x-y)(x^2+xy+y^2)$

g/ $=(3+x)(9-3x+x^2)$

h/ $=(x+2)^3$

i/ $=(1-x)^3$

10 tháng 10 2021

a: \(x^2-4x+4=\left(x-2\right)^2\)

b: \(4x^2+4x+1=\left(2x+1\right)^2\)

g: \(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)

27 tháng 10 2021

\(a,=\left(x+1\right)\left(x+3\right)\\ b,=-5x^2+15x+x-3=\left(x-3\right)\left(1-5x\right)\\ c,=2x^2+2x+5x+5=\left(2x+5\right)\left(x+1\right)\\ d,=2x^2-2x+5x-5=\left(x-1\right)\left(2x+5\right)\\ e,=x^3+x^2-4x^2-4x+x+1=\left(x+1\right)\left(x^2-4x+1\right)\\ f,=x^2+x-5x-5=\left(x+1\right)\left(x-5\right)\)