Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phân số \(\frac{n+8}{n-2}\)đạt giá trị nguyên
\(\Rightarrow n+8⋮n-2\)
\(\Leftrightarrow\left(n-2\right)+10⋮n-2\)
Do \(n-2⋮n-2\)
\(\Rightarrow10⋮n-2\)
\(\Rightarrow n-2\inƯ\left(10\right)\)
\(\Rightarrow n-2\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
Ta có bảng sau :
n - 2 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | 3 | 1 | 4 | 0 | 7 | -3 | 12 | -8 |
Vậy để \(\frac{n+8}{n-2}\)là số nguyên
\(\Rightarrow n\in\left\{3;1;4;0;7;-3;12;-8\right\}\)
a) Để phân số A tồn tại \(\Leftrightarrow n-3\ne0\)
\(\Leftrightarrow n\ne3\)
Vậy \(\Leftrightarrow n\ne3\)thì phân số A tồn tại
b) Để A có giá trị nguyên
\(\Leftrightarrow n+2⋮n-3\)
\(\Leftrightarrow n-3+5⋮n-3\)
mà \(n-3⋮n-3\)
\(\Rightarrow5⋮n-3\)
\(\Rightarrow n-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Tự tìm nốt n
ta có \(\frac{n-2}{n+3}=\frac{n+3-5}{n+3}\)
vì n+3 chia hết cho n+3
=> 5 chia hết cho n+3
=> n+3 thuộc Ư(5)={ 5:1:-5;-1}
ta có bảng giá trị
n+3 | 5 | 1 | -5 | -1 |
n | 2 | -2 | -7 | -3 |
đ/c | tm | tm | tm | tm |
vậy...........
BÀI LÀM CHO CẢ 2 PHẦN LUÔN NHÉ
\(\frac{3n+1}{2-n}=\frac{6n-12+13}{-\left(n-2\right)}\)\(=\frac{6\left(n-2\right)}{-\left(n-2\right)}-\frac{13}{n-2}=-6-\frac{13}{n-2}\)
Để \(\frac{3n+1}{2-n}\)là số nguyên => 13/n-2 là số nguyên => 13 chia hết cho n-2 hay n-2 thuộc Ư(13)
n-2 thuộc { -13;-1;1;13}
\(n\in\left\{-11;1;3;15\right\}\)
B là phân số khi
*) \(n-2\ne0\)
\(\Rightarrow n\ne2\)
*) \(-7\)không chia hết cho \(n-2\)
Mà \(Ư\left(-7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow\)Ta có :
+) \(n-2\ne1\) +) \(n-2\ne-1\)
\(\Rightarrow n\ne3\) \(\Rightarrow n\ne1\)
+) \(n-2\ne7\) +) \(n-2\ne-7\)
\(\Rightarrow n\ne9\) \(\Rightarrow n\ne-5\)
Vậy với \(n\ne3;1;9;-5\) thì biểu thức \(B\)là phân số
\(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
\(=\frac{2n+1+3n-5-4n+5}{n-3}\)
\(=\frac{n+1}{n-3}\)
a) Để A là phân số thì \(n-3\ne0\)
\(\Leftrightarrow n\ne3\)
b) Để A là số nguyên thì \(n+1⋮n-3\)
Ta có n+1=n-3+4
=> 4 \(⋮\)n-3
=> n-3\(\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Ta có bảng
n-3 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -1 | 1 | 2 | 4 | 5 | 7 |
Đặt \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+3n-5-4n-5}{n-3}=\frac{n-9}{n-3}\)
a) Để A là một phân số thì \(n-3\ne0\)=> \(n\ne3\)
b) Ta có : \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{n-9}{n-3}=\frac{n-3-6}{n-3}=1-\frac{6}{n-3}\)
A có giá trị nguyên <=> \(n-3\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
n - 3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 4 | 2 | 5 | 1 | 6 | 0 | 9 | -3 |
Ta có :
\(A=\frac{n-5}{n-2}=\frac{n-2-3}{n-2}=\frac{n-2}{n-2}-\frac{3}{n-2}=1-\frac{3}{n-2}\)
Để \(A\inℤ\) thì \(\frac{3}{n-2}\inℤ\) \(\Rightarrow\) \(3⋮\left(n-2\right)\) \(\Rightarrow\) \(\left(n-2\right)\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Suy ra :
\(n-2\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(3\) | \(1\) | \(5\) | \(-1\) |
Vậy \(n\in\left\{-1;1;3;5\right\}\)
Chúc bạn học tốt ~
Ta có n-5/n-2=(n-2)-3/n-2=1 - 3/n-2
Để n-5/n-2 nguyên thì 3 chia hết cho n-2
Nên n-2 là ước của 3
Với n-2=1=>n=3
Với n-2=-1=>n=1
Với n-2=3 =>n=5
Với n-2=-3=>n=-1
Vậy n=-1;5;1;3
\(A=\frac{2n+5}{n+3}=\frac{2n+6-1}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)
Để A nguyên thì 1/n+3 nguyên
hay n + 3 thuộc Ư(1) = { 1 ; -1 ]
=> n thuộc { -2 ; -4 } thì A nguyên
n phải nguyên chứ nhỉ
\(\frac{n+2}{n+5}\)là số nguyên <=> n+2\(⋮\)n+5 <=> n+5-3\(⋮\)n+5
<=> -3\(⋮\)n+5 <=> n+5\(\in\)Ư(-3)={1,-1,3,-3}
Do đó n\(\in\){-4,-6,-2,-8}
\(\frac{n+2}{n+5}\)=\(\frac{n+5}{n+5}\)-\(\frac{3}{n+5}\)=1-\(\frac{3}{n+5}\) Đểphân số nguyên thì \(\frac{3}{n+5}\)nguyên, suy ra n+5 là ước của 3, đến đây dễ rồi bn tự làm nha