\(\frac{n-5}{n-2}\)có giá trị là một số nguyên.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

Ta có : 

\(A=\frac{n-5}{n-2}=\frac{n-2-3}{n-2}=\frac{n-2}{n-2}-\frac{3}{n-2}=1-\frac{3}{n-2}\)

Để \(A\inℤ\) thì \(\frac{3}{n-2}\inℤ\) \(\Rightarrow\) \(3⋮\left(n-2\right)\) \(\Rightarrow\) \(\left(n-2\right)\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Suy ra : 

\(n-2\)\(1\)\(-1\)\(3\)\(-3\)
\(n\)\(3\)\(1\)\(5\)\(-1\)

Vậy \(n\in\left\{-1;1;3;5\right\}\)

Chúc bạn học tốt ~ 

27 tháng 3 2018

Ta có n-5/n-2=(n-2)-3/n-2=1 - 3/n-2

Để n-5/n-2 nguyên thì 3 chia hết cho n-2

Nên n-2 là ước của 3

Với n-2=1=>n=3

Với n-2=-1=>n=1

Với n-2=3 =>n=5

Với n-2=-3=>n=-1

Vậy n=-1;5;1;3

15 tháng 7 2016

a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê

<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}

<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}

Bạn tự tính giá trị với mỗi n

b) Tương tự

15 tháng 7 2016

Thank you các bạn nha !

4 tháng 7 2019

a) Ta có:

Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4

b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)

+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)

c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)

Để A \(\in\)Z <=> 1 \(⋮\)n + 4

      <=> n + 4 \(\in\)Ư(1) = {1; -1}

Lập bảng :

n + 41 -1
   n-3 -5

Vậy ....

4 tháng 7 2019

1a) Để A là phân số thì n \(\ne\)- 4 ; n 

b) + Khi n = 1 

=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)

+ Khi n = -1 

=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)

 c) Để \(A\inℤ\)

=> \(n+5⋮n+4\)

=> \(n+4+1⋮n+4\)

Ta có : Vì \(n+4⋮n+4\)

=> \(1⋮n+4\)

=> \(n+4\inƯ\left(1\right)\)

=> \(n+4\in\left\{\pm1\right\}\)

Lập bảng xét các trường hợp

\(n+4\)\(1\)\(-1\)
\(n\)\(-3\)\(-5\)

Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)

19 tháng 6 2018

Để \(\frac{3n+9}{n-4}\)thì tử phải chia hết cho mẫu hay mẫu phải thuộc ước của từ.Ta tìm điều kiện thích hợp :

\(3n+9⋮n-4\Leftrightarrow3n-12+21⋮n-4\)

\(\Rightarrow3\left(n-4\right)+21⋮n-4\)

\(3\left(n-4\right)⋮n-4\Rightarrow21⋮n-4\)

\(\Leftrightarrow n-4\inƯ\left(21\right)=\left\{1,3,7,21,-1,-3,-7,-21\right\}\)

Rồi bạn lập bảng rồi tính giá trị ra

Tương tự câu b

\(6n+5=6n-1+6⋮6n-1\)

\(6n-1⋮6n-1\Rightarrow6⋮6n-1\)

19 tháng 6 2018

a ) Để 3n + 9 / n -4 là số nguyên thì 3n + 9 chia hết cho n - 4

                                                           hay 3n - 4 + 13 chia hết cho n - 4

                                                           nên 13 chia hết cho n - 4 ( vì 3n - 4 chia hết cho n - 4 )

                                                            do đó n - 4 thuộc Ư( 13) = { -13;-1;1;13}

                                                           hay n thuộc { -9;3;5;17}

Vậy n thuộc { -9;3;5;17}

b) Để 6n + 5 / 6n - 1 là số nguyên thì 6n + 5 chia hết cho 6n - 1

hay 6n -1 + 6 chia hết cho 6n - 1

nên 6 chia hết cho 6n - 1 ( 6n - 1 chia hết cho 6n - 1)

do đó 6n - 1 thuộc Ư(6) = { -6;-3;-2;-1;1;2;3;6}

xét các trường hợp được n = 0

Vậy n = 0

20 tháng 4 2021

\(A=\frac{2n+5}{n+3}=\frac{2n+6-1}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Để A nguyên thì 1/n+3 nguyên

hay n + 3 thuộc Ư(1) = { 1 ; -1 ]

=> n thuộc { -2 ; -4 } thì A nguyên

22 tháng 4 2019

\(A=\frac{2n+5}{n+3}=\frac{2n+6-1}{n+3}=2-\frac{1}{n+3}\)

Để A có giá trị là số nguyên 

=> 1 chia hết cho n + 3

=> \(n+3\inƯ\left(1\right)\)

=> \(n+3\in\left\{1;-1\right\}\)

=> \(n\in\left\{-2;-4\right\}\)

Vậy A có giá trị là số nguyên khi n = -2 hoặc n = -4

22 tháng 4 2019

để A nguyên \(\Rightarrow2n+5⋮n+3\)

\(\Rightarrow\left(2n+6\right)-1⋮n+3\)

\(\Rightarrow n+3\text{là}Ư_1\in\left\{\pm1\right\}\)

Ta có bảng sau
\(n+3\)1-1
\(n\)-2-4

      Vậy \(n\in\left\{-2;-4\right\}\)

19 tháng 3 2019

Gọi \(A=\frac{n+1}{n-2}\)

Để \(A\inℤ\)thì : \(n+1⋮n-2\)

                            = \(\left(n-2\right)+3⋮\left(n-2\right)\)

                            => \(3⋮\left(n-2\right)\)( vì \(\left(n-2\right)⋮\left(n-2\right)\))

                            => \(n-2\in U\left(3\right)=\){-1; 1; -3; 3}

                            => \(n\in\left\{1;3;-1;5\right\}\)

1 tháng 4 2019

\(\frac{n+1}{n-2}\)\(=\)\(\frac{n-2+3}{n-2}\)\(=\)\(\frac{n-2}{n-2}\)\(+\)\(\frac{3}{n-2}\)\(=\)\(1\)\(+\)\(\frac{3}{n-2}\)

\(để\)\(\frac{n+1}{n-2}\)\(có\)\(giá\)\(trị\)\(nguyên\)\(thì\)\(\frac{3}{n-2}\)\(pk\)\(có\)\(giá\)\(trị\)\(nguyên\)\(=>\)\(3⋮n-2\)

\(=>n-2\inƯ\left(3\right)\)\(=>....\)

\(Từ\)\(ó\)\(tự\)\(suy\)\(ra...\)

4 tháng 7 2019

Ta có: B = \(\frac{3n+2}{n+1}=\frac{3\left(n+1\right)-1}{n+1}=3-\frac{1}{n+1}\)

Để B \(\in\)Z <=> 1 \(⋮\)n + 1 <=> n + 1 \(\in\)Ư(1) = {1; -1}

Với: +) n + 1 = 1  => n = 1 - 1 = 0

    +)n + 1 = -1    => n = -1 - 1 = -2

Vậy ...

4 tháng 7 2019

Để \(B\inℤ\)

=> \(3n+2⋮n+1\)

=> \(3n+3-1⋮n+1\)

=> \(3\left(n+1\right)-1⋮n+1\)

Ta có : Vì \(3n+1⋮n+1\)

  => \(-1⋮n+1\)

  => \(n+1\inƯ\left(-1\right)\)

  => \(n+1\in\left\{\pm1\right\}\)

Lập bảng xét các trường hợp :

\(n+1\)\(1\)\(-1\)
\(n\)\(0\)\(-2\)

Vậy \(B\inℤ\Leftrightarrow n\in\left\{0;-2\right\}\)

29 tháng 3 2020

\(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)

\(=\frac{2n+1+3n-5-4n+5}{n-3}\)

\(=\frac{n+1}{n-3}\)

a) Để A là phân số thì \(n-3\ne0\)

\(\Leftrightarrow n\ne3\)

b) Để A là số nguyên thì \(n+1⋮n-3\)

Ta có n+1=n-3+4

=> 4 \(⋮\)n-3

=> n-3\(\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

Ta có bảng

n-3-4-2-1124
n-112457
29 tháng 3 2020

Đặt  \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+3n-5-4n-5}{n-3}=\frac{n-9}{n-3}\)

a) Để A là một phân số thì \(n-3\ne0\)=> \(n\ne3\)

b) Ta có : \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{n-9}{n-3}=\frac{n-3-6}{n-3}=1-\frac{6}{n-3}\)

A có giá trị nguyên <=> \(n-3\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

n - 31-12-23-36-6
n4251609-3
NM
10 tháng 5 2021

Ta có 

\(A=\frac{3n+4}{n-1}=3+\frac{7}{n-1}\)là số nguyên khi n-1 là ước của 7 hay

\(n-1\in\left\{\pm1,\pm7\right\}\Rightarrow n\in\left\{-6,0,2,8\right\}\)

10 tháng 5 2021

Để A có  giá trị nguyên

<=> 3n + 4 ⋮  n - 1

=> ( 3n - 3 ) + 7 ⋮  n - 1

=> 3 . ( n - 1 ) + 7 ⋮  n - 1

vì 3.(n-1) + 7 chia hết cho n-1 và 3.(n-1) chia hết cho n-1 nên 7 chia hết cho n-1 

=> n - 1 ∈  Ư(7) = { - 7 ; -1 ; 1 ; 7 }

Ta có bảng sau :

n-11-1-77
n20-68

mọi giá trị n đều thuộc z (chọn)

 Vậy x  ∈ { - 6 ; 0 ; 2 ; 8 }