K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2019

Gọi ƯCLN(6n+5;3n+2) là d

Ta có:\(6n+5⋮d\)

\(3n+2⋮d\Rightarrow2\left(3n+2\right)⋮d\Rightarrow6n+4⋮d\Rightarrow6n+5-6n+4⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\RightarrowƯCLN\left(6n+5;3n+2\right)=1\left(n\in N\right)\)

\(\Rightarrow P\)là phân số tối giản

Ta có:\(p=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=\frac{2.\left(3n+2\right)+1}{3n+2}=2+\frac{1}{3n+2}\)

Để P có giá trị lớn nhất

\(\Rightarrow\frac{1}{3n+2}\)có giá trị lớn nhất

\(\frac{1}{3n+2}\ge1\)

Dấu\("="\)xảy ra khi

\(\frac{1}{3n+2}=1\Rightarrow3n+2=1\Rightarrow3n=-1\Rightarrow n=\frac{-1}{3}\)

\(\Rightarrow\)Giá trị lớn nhất của \(P=2+1=3\)khi\(n=\frac{-1}{3}\)

6 tháng 4 2019

\(a,\)Gọi d là ƯCLN\((6n+5,3n+2)\)\((ĐK:d\inℕ^∗)\)

Ta có : \(d\inƯC(6n+5,3n+2)\)nên :

\((6n+3)⋮d\) và \((3n+2)⋮d\)

\(\Rightarrow\left[2(3n+2)-(6n+3)\right]⋮d\)

\(\Rightarrow\left[(6n+4)-(6n+3)\right]⋮d\)

\(\Rightarrow1⋮d\)

Mà \(d\inℕ^∗\)nên d = 1 . Vậy phân số \(P=\frac{6n+5}{3n+2}\)là phân số tối giản

b, Tự làm

20 tháng 1 2017

Làm khâu rút gọn thôi 

\(=\frac{15}{x+2}+\frac{42}{3x+6}\)

\(=\frac{15}{x+2}+\frac{42}{3\left(x+2\right)}\)

\(=\frac{3.15+42}{3\left(x+2\right)}\)

\(=\frac{87}{3\left(x+2\right)}\)

\(=\frac{29}{x+2}\)

20 tháng 1 2017

Câu b có phải để tử chia hết cho mẫu không nhỉ? Không chắc thôi để ngkh làm 

18 tháng 5 2018

Để A là số nguyên 

<=> 4n + 1 chia hết cho 2n + 3 

<=> 4n + 6 - 5 chia hết cho 2n + 3

<=> 2(2n + 3) - 5 chia hết cho 2n + 3 

<=> 5 chia hết cho 2n + 3

<=> 2n + 3 thuộc Ư(5) = {-1 ; 1 ; -5 ; 5}

<=> n thuộc {-2 ; -1 ; -4 ; 1}

12 tháng 2 2016

ai làm giúp mìnk vs!!!

12 tháng 2 2016

help me!!!!!!!!!

\(B=\frac{17,58\left(43+57\right)}{293.a}=\frac{1758}{293.a}\)

a) Ta có \(B=\frac{1758}{293.a}=2\)

<=> \(293.a.2=1758\)

<=> 586.a=1758

<=> a=3

b)Để Bmax thì 293.a bé nhất và dương

=> 293.a=293

=> a=1

lúc đó \(B=\frac{1758}{293}=6\)

Vậy Bmax=6 <=> a=1

5 tháng 4 2018

\(2B=\frac{10n-3}{2n-5}=\frac{10n-25+22}{2n-5}=\frac{5\left(2n-5\right)}{2n-5}+\frac{22}{2n-5}\)

=> \(2B=5+\frac{22}{2n-5}\)

Để B đạt giá trị lớn nhất thì 2B phải đạt GTLN

=> \(\frac{22}{2n-5}\)phải đạt GTLN  => (2n-5) đạt GTNN => n=0 => 2n-5=-5

GTLN của 2B là: \(2B_{max}=5-\frac{22}{5}=\frac{3}{5}\)

=> \(B_{max}=\frac{3}{10}\) đạt được khi n=0

8 tháng 3 2020

Để B đạt GTLN thì 2B đạt GTLN

Ta có:

2B=2.10n−34n−10=20n−64n−10=20n−50+444n−10=5.(4n−10)+444n−102B=2.10n−34n−10=20n−64n−10=20n−50+444n−10=5.(4n−10)+444n−10

                                      2B=5.(4n−10)4n−10+444n−10=5+444n−102B=5.(4n−10)4n−10+444n−10=5+444n−10

Để 2B đạt GTLN thì 444n−10444n−10 đạt GTLN

=> 4n - 10 đạt GTNN

+ Với x < 3 thì 4n - 10 < 0, khi đó 444n−10<0444n−10<0

+ Với x≥3x≥3 thì 4n - 10 > 0, khi đó 444n−10444n−10 > 0 

Mà n nhỏ nhất => n = 3 

Như vậy, ta tìm được n = 3 thỏa mãn 2B đạt GTLN

Thay n = 3 vào B ta có:

B=10.3−34.3−10=30−312−10=272B=10.3−34.3−10=30−312−10=272

Vậy với n = 3 thì B đạt GTNN = 272