K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2021

Trả lời :

\(x^2-2x=24\)

\(\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow \left(x-6\right)\left(x+4\right)=0\)

\(\Leftrightarrow \orbr{\begin{cases}x=6\\x=-4\end{cases}}\)

Vậy \(\text{S}=\left\{6;-4\right\}\).

~HT~

23 tháng 6 2021

Trả lời :

Tui làm đúng rồi, ai t i c k sai ns nhanhhh

~HT~

7 tháng 10 2021

\(\left(x^2+2x\right)^2-2x^2-4x=3\)

\(\Rightarrow x^4+4x^3+4x^2-2x^2-4x=3\)

\(\Rightarrow x^4+4x^3+2x^2-4x-3=0\)

\(\Rightarrow x^3\left(x-1\right)+5x^2\left(x-1\right)+7x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x^3+5x^2+7x+3\right)=0\)

\(\Rightarrow\left(x-1\right)\left[x^2\left(x+1\right)+4x\left(x+1\right)+3\left(x+1\right)\right]=0\)

\(\Rightarrow\left(x-1\right)\left(x+1\right)\left(x^2+4x+3\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x+1\right)\left[x\left(x+3\right)+\left(x+3\right)\right]=0\)

\(\Rightarrow\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=-3\end{matrix}\right.\)

4 tháng 9 2021

Ta có : (x - 2)(x2 + 4) = x2 - 2x 

<=> (x - 2)(x2 + 4) = x(x - 2) 

<=> (x - 2)(x2 - x + 4) = 0

<=> x - 2 = 0 (vì \(x^2-x+4=\left(x-\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\forall x\))

<=> x = 2

Vậy x = 2 

1 tháng 9 2023

c) \(x^2-9=2\cdot\left(x+3\right)^2\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-2\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(x+3\right)\left[x-3-2\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-3-2x-6\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(-x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-9\end{matrix}\right.\)

b) \(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

d) \(x^2-8x+3x-24=0\)

\(\Leftrightarrow\left(x^2-8x\right)+\left(3x-24\right)=0\)

\(\Leftrightarrow x\left(x-8\right)+3\left(x-8\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-8=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=8\end{matrix}\right.\)

1 tháng 9 2023

a) \(x^2-9=2\left(x+3\right)^2\)

\(\Leftrightarrow\left(x+3\right)\left(x-3\right)=2\left(x+3\right)^2\)

\(\Leftrightarrow2\left(x+3\right)^2-\left(x+3\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left[2\left(x+3\right)-\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left[2x+6-x+3\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+9\right)=0\)

\(\)\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+9=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-9\end{matrix}\right.\)

b) \(x^2-8x+3x-24=0\)

\(\Leftrightarrow\left(x-8\right)x+3\left(x-8\right)=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x+3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)

c) \(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Lời giải:

a. $9x^2-16-(3x-4)(2x+5)=0$

$\Leftrightarrow [(3x)^2-4^2]-(3x-4)(2x+5)=0$

$\Leftrightarrow (3x-4)(3x+4)-(3x-4)(2x+5)=0$

$\Leftrightarrow (3x-4)(3x+4-2x-5)=0$

$\Leftrightarrow (3x-4)(x-1)=0$

$\Leftrightarrow 3x-4=0$ hoặc $x-1=0$

$\Leftrightarrow x=\frac{4}{3}$ hoặc $x=1$.

b.

$x^2+4x=12$

$\Leftrightarrow x^2+4x-12=0$

$\Leftrightarrow (x^2-2x)+(6x-12)=0$

$\Leftrightarrow x(x-2)+6(x-2)=0$

$\Leftrightarrow (x-2)(x+6)=0$

$\Leftrightarrow x-2=0$ hoặc $x+6=0$

$\Leftrightarrow x=2$ hoặc $x=-6$

c.

$x^2-2x=35$

$\Leftrightarrow x^2-2x-35=0$

$\Leftrightarrow (x^2+5x)-(7x+35)=0$

$\Leftrightarrow x(x+5)-7(x+5)=0$

$\Leftrightarrow (x+5)(x-7)=0$

$\Leftrightarrow x+5=0$ hoặc $x-7=0$

$\Leftrightarrow x=-5$ hoặc $x=7$

25 tháng 11 2023

cảm ơn bạn nhìu nha vui

10 tháng 8 2023

1) \(\left(x-3\right)^2-4=0\)

\(\Leftrightarrow\left(x-3-2\right)\left(x-3+2\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

2) \(x^2-2x=24\)

\(\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow x^2+4x-6x-24=0\)

\(\Leftrightarrow x\left(x+4\right)-6\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

 

10 tháng 8 2023

Câu 3 số xấu rồi e

27 tháng 7 2017

B = x2y2+2x2+24xy+16x+191 = [ (xy)^2 + 24xy + 144] + \(\left[\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.4\sqrt{2}+32\right]\)+15

= (xy+12)^2 +(\(\sqrt{2}x\)+\(4\sqrt{2}\))^2 + 15 

( ở đây mik làm tắt) => Min B = 15 khi \(\sqrt{2}x+4\sqrt{2}=0=>x=-4\)và xy+12 = 0 => -4y = -12= > y=3

25 tháng 7 2017

A= 2x^2+9y^2-6xy-6x-12y+2004

A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2004

A = [(x -3y)^2 +4(x -3y) + 4] + (x^2 -10x +25) + 1975

A= (x -3y +2)^2 + (x -5)^2 + 1975

( mik rút mấy cái bước (x-3y+2)^2 = 0, bn làm thì nên thêm vào=> Min A = 1975 vs x= 5 và y = 7/3

D=-x^2+2xy-4y^2+2x+10y-8

D = (-x^2 - y^2 - 1 + 2xy + 2x - 2y) + (-3y^2 + 12y - 12) + 5

D = -(x^2+y^2+1 - 2xy - 2x + 2y) - 3(y^2 - 4y + 4) + 5

D= - (x - y - 1)^2 - 3(y - 2)^2 +5 

=> Max D = 5 khi x= 3 và y=2

1 tháng 2 2020

1) \(x^4-2x^2-144x+1295=0\)

\(\Rightarrow\)Cậu xem lại đề thử xem nhé !

2) \(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+2x\right)\left(x^2-1\right)-24=0\)

\(\Leftrightarrow x^4+2x^3-x^2-2x-24=0\)

\(\Leftrightarrow x^4+x^3+4x^2+x^3+x^2+4x-6x^2-6x-24=0\)

\(\Leftrightarrow x^2\left(x^2+x+4\right)+x\left(x^2+x+4\right)-6\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x^2+3x-2x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left[x\left(x+3\right)-2\left(x+3\right)\right]\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\)\(x+3=0\)

hoặc \(x-2=0\)

hoặc \(x^2+x+4=0\)

\(\Leftrightarrow\)\(x=-3\left(tm\right)\)

hoặc   \(x=2\left(tm\right)\)

hoặc  \(\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-3;2\right\}\)

3) \(x^4-2x^3+4x^2-3x-10=0\)

\(\Leftrightarrow x^4+x^3-3x^3-3x^2+7x^2+7x-10x-10=0\)

\(\Leftrightarrow x^3\left(x+1\right)-3x^2\left(x+1\right)+7x\left(x+1\right)-10\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-3x^2+7x-10\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-2x^2-x^2+2x+5x-10\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+5\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2-x+5\right)=0\)

\(\Leftrightarrow\)\(x+1=0\)

hoặc \(x-2=0\)

hoặc \(x^2-x+5=0\)

\(\Leftrightarrow x=-1\left(tm\right)\)

hoặc \(x=2\left(tm\right)\)

hoặc \(\left(x-\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\)

Vậy tập nghiệm của phương trình là :\(S=\left\{-1;2\right\}\)

\(\left(x+2\right)^2-x^2+4=0\)

\(\Leftrightarrow\left(x+2\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x+2\right)^2-\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(\left(x+2\right)-\left(x-2\right)\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+2-x+2\right)=0\)

\(\Leftrightarrow4\left(x+2\right)=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

tìm a,b,c,d thỏa mãn

a2-2a+b2+4b+4c2-4c+6=0

18 tháng 1 2021

Tìm GTNN??

Ta có: \(A=\frac{2x^2+2x+7}{x^2+x+1}=\frac{2\left(x^2+x+1\right)+5}{x^2+x+1}=2+\frac{5}{x^2+x+1}\)

(Vì \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\) )

\(\Rightarrow A=2+\frac{5}{x^2+x+1}\le2+\frac{5}{\frac{3}{4}}=\frac{26}{3}\)

Dấu "=" xảy ra khi: x = -1/2