K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x+2\right)^2-x^2+4=0\)

\(\Leftrightarrow\left(x+2\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x+2\right)^2-\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(\left(x+2\right)-\left(x-2\right)\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+2-x+2\right)=0\)

\(\Leftrightarrow4\left(x+2\right)=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

tìm a,b,c,d thỏa mãn

a2-2a+b2+4b+4c2-4c+6=0

15 tháng 6 2021

- Gửi lẻ câu hỏi ra nha bạn 2 3 câu 1 lần thôi .

15 tháng 6 2021

a) (x-3)2-4=0

⇒ (x-3)2=4

⇒ hoặc x-3=2⇒x=5

hoặc x-3=-2⇒x=1

23 tháng 2 2023

`a,x^2 +4x-5=0`

`<=> x^2-x+5x-5=0`

`<=> x(x-1)+5(x-1)=0`

`<=>(x-1)(x+5)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

`b, x^2 -x-12=0`

`<=> x^2 +3x-4x-12=0`

`<=>(x^2+3x)-(4x+12)=0`

`<=>x(x+3)-4(x+3)=0`

`<=>(x+3)(x-4)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

`c, (2x-7)^2 - 6(2x-7)(x-3)=0`

`<=>(2x-7)(2x-7 -6x+18)=0`

`<=>(2x-7) ( -4x+11)=0`

\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\-4x+11=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=7\\-4x=-11\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{11}{4}\end{matrix}\right.\)

 

 

a: =>(x+5)(x-1)=0

=>x=1 hoặc x=-5

b: =>(x-4)(x+3)=0

=>x=4 hoặc x=-3

c: =>(2x-7)(2x-7-6x+18)=0

=>(2x-7)(-4x+11)=0

=>x=11/4 hoặc x=7/2

14 tháng 1 2021

a) (x - 7)(2x + 8) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\2x+8=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\2x=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-4\end{matrix}\right.\)

Vậy: S = {7; -4}

b) Tương tự câu a

c)  (x - 1)(2x + 7)(x2 + 2) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\\x^2+2=0\end{matrix}\right.\)

Mà: x+ 2 > 0 với mọi x

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=-7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{1;-\dfrac{7}{2}\right\}\)

d) (2x - 1)(x + 8)(x - 5) = 0

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+8=0\\x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\x=-8\\x=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-8\\x=5\end{matrix}\right.\)

Vậy \(S=\left\{\dfrac{1}{2};-8;5\right\}\)

 

14 tháng 1 2021

a/ Pt \(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\2x+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-4\end{matrix}\right.\)

Vậy \(S=\left\{7;-4\right\}\)

b/ pt \(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\5x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=\dfrac{2}{5}\end{matrix}\right.\)

c/ pt \(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\) (\(x^2+2>0\forall x\))\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)

d/ pt \(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+8=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-8\\x=5\end{matrix}\right.\)

13 tháng 4 2021

a, \(\left(x^2-5x+7\right)^2-\left(2x-5\right)^2=0\)

\(\Leftrightarrow\left(x^2-5x+7-2x+5\right)\left(x^2-5x+7+2x-5\right)=0\)

\(\Leftrightarrow\left(x^2-7x+12\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow x=1;x=2;x=3;x=4\)

Vậy tập nghiệm phương trình là S = { 1 ; 2 ; 3 ; 4 } 

b, \(\left|2x-1\right|=5\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là S = { -2 ; 3 } 

c, \(\left|2x-1\right|=\left|x+5\right|\Leftrightarrow\left(2x-1\right)^2=\left(x+5\right)^2\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(x+5\right)^2=0\Leftrightarrow\left(2x-1-x-5\right)\left(2x-1+x+5\right)=0\Leftrightarrow x=6;x=-\dfrac{4}{3}\)

Vậy tập nghiệm của phương trình là S = { -4/3 ; 6 } 

d, \(\left|3x+1\right|=x-2\)

TH1 : \(3x+1=x-2\Leftrightarrow2x=-3\Leftrightarrow x=-\dfrac{3}{2}\)

TH2 : \(3x+1=-x+2\Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\)

Vậy tập nghiệm của phương trình là S = { -3/2 ; 1/4 } 

các ý còn lại tương tự 

a) Ta có: \(\left(x^2-5x+7\right)^2-\left(2x-5\right)^2=0\)

\(\Leftrightarrow\left(x^2-5x+7-2x+5\right)\left(x^2-5x+7+2x-5\right)=0\)

\(\Leftrightarrow\left(x^2-7x+12\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\\x=1\\x=2\end{matrix}\right.\)

Vậy: S={3;4;1;2}

28 tháng 9 2021

a. 6x2 - (2x + 5)(3x - 2) = 7

<=> 6x2 - 6x2 + 4x - 15x + 10 = 7

<=> -11x = -3

<=> \(x=\dfrac{3}{11}\)

b. (5 - x)(25 + 5x + x2) + x(x2 - 7) = 25

<=> 125 - x3 + x3 - 7x = 25

<=> -7x = 25 - 125

<=> -7x = -100

<=> \(x=\dfrac{100}{7}\)

c. (7 - 2x)2 + (3 + 2x)(3 - 2x) = 30

<=> 49 - 28x + 4x2 + 9 - 4x2 = 30

<=> 4x2 - 4x2 - 28x = 30 - 49 - 9

<=> -28x = -28

<=> x = 1

28 tháng 9 2021

Cảm ơn bạn rất nhiều ạ:3 <3

25 tháng 12 2022

\((2x-1)^2+(x+3)^2-5(x+7)(x-7)=0\)

\(< =>4x^2-4x+1+x^2+6x+9-5\left(x^2-7^2\right)=0\\ < =>4x^2-4x+1+x^2+6x+9-5x^2+245=0\\ < =>2x+255=0\\ < =>2x=-255=>x=\dfrac{-255}{2}\)

Vậy \(x=\dfrac{-255}{2}\)

25 tháng 12 2022

\(\Rightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)

\(\Rightarrow2x+255=0\Rightarrow2x=-255\Rightarrow x=-\dfrac{255}{2}\)

3 tháng 2 2022

a) \(\left(3x-2\right)\left(4x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{2}{3};-\dfrac{5}{4}\right\}\)

b) \(\left(2,3x-6,9\right)\left(0,1x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2,3x-6,9=0\\0,1x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-20\end{matrix}\right.\)

c) \(\left(4x+2\right)\left(x^2+1\right)=0\)

Vì \(x^2+1\ge1>0\forall x\)

\(\Rightarrow4x+2=0\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)

d) \(\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+7=0\\x-5=0\\5x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\\x=-\dfrac{1}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{7}{2};5;-\dfrac{1}{5}\right\}\)

e) \(\left(x-1\right)\left(2x+7\right)\left(x^2+2\right)=0\)

Vì \(x^2+2\ge2>0\forall x\)

\(\Rightarrow\left(x-1\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)

f) \(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\)

\(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\left(x+1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[\left(3x+2\right)\left(x+1\right)\right].\left(x-1-3x+2\right)=0\)

\(\Leftrightarrow\left(3x^2+5x+2\right)\left(-2x+1\right)=0\)

\(\Leftrightarrow\left(3x^2+3x+2x+2\right)\left(-2x+1\right)=0\)

\(\Leftrightarrow\left[3x\left(x+1\right)+2\left(x+1\right)\right]\left(-2x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x+2\right)\left(-2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x+2=0\\-2x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{2}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{-1;-\dfrac{2}{3};\dfrac{1}{2}\right\}\)

10 tháng 12 2021

\(a,\Leftrightarrow2x^2+10x-2x^2=12\Leftrightarrow x=\dfrac{12}{10}=\dfrac{6}{5}\\ b,\Leftrightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\\ \Leftrightarrow\left(1-2x\right)\left(9-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\\ d,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ e,\Leftrightarrow4x^2-4x+1-4x^2+196=0\\ \Leftrightarrow-4x=-197\Leftrightarrow x=\dfrac{197}{4}\)

\(f,\Leftrightarrow x^2+8x+16-x^2+1=16\Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\\ g,Sửa:\left(3x+1\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(3x+1-x-1\right)\left(3x+1+x+1\right)=0\\ \Leftrightarrow2x\left(4x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\\ h,\Leftrightarrow x^2+8x-x-8=0\\ \Leftrightarrow\left(x+8\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\\ i,\Leftrightarrow2x^2-13x+15=0\\ \Leftrightarrow2x^2+2x-15x-15=0\\ \Leftrightarrow\left(x+1\right)\left(2x-15\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{15}{2}\end{matrix}\right.\)