K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2022

Ta có :

S = 3+2+4+8+...+22022-22023

=> S = 3+2+22+23+...+22022-22023

=> 2S=6+22+23+24+...+22023-22024

=> 2S-S=(6+22+23+24+...+22023-22024)-(3+22+23+...+22022-22023)

=> S = 3-22024

22 tháng 9 2022

S = 3 + 2 + 4 + 16 +......+ 22022 - 22023

S =       (2 + 22 + 23+......+22022) + 3 - 22023

đặt C = 2 + 22 + 23+.......+22022 

        C = 2 + 22 + 23 +.........+ 22022

      2C =       22 + 23 + .......+  22022 + 22023

2C - C = 22023 - 2

         C = 22023 - 2

   S = C + 3 - 22023

   S =  22023 - 2 + 3 - 22023

    S = 1

7 tháng 10 2023

22023 - 22022 = 22022. ( 2 - 1) = 22022

7 tháng 10 2023

\(2^{2023}-2^{2022}\)

\(=2^{2022}\cdot2-2^{2022}\)

\(=2^{2022}\cdot\left(2-1\right)\)

\(=2^{2022}\cdot1\)

\(=2^{2022}\)

19 tháng 10 2023

a) 2²⁰²² + 2²⁰²³ = 2²⁰²².(1 + 2)

= 2²⁰²².3 ⋮ 3

b) Xem lại đề

c) 7⁸ + 7⁷ - 7⁶

= 7⁶.(7² + 7 - 1)

= 7⁶.(49 + 7 - 1)

= 7⁶.55 ⋮ 55

26 tháng 12 2022

a) A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²

2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³

A = 2A - A

= (2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²)

= 2²⁰²³ - 2⁰

= 2²⁰²³ - 1

Vậy A = B

b) A = 2021 . 2023

= (2022 - 1).(2022 + 1)

= 2022.(2022 + 1) - 2022 - 1

= 2022² + 2022 - 2022 - 1

= 2022² - 1 < 2022²

Vậy A < B

4A=2^2+2^4+...+2^2024

=>3A=2^2024-1

2B=2^2024

=>3A và 2B là hai số tự nhiên liên tiếp

2:

a: =>2(x+1)=26

=>x+1=13

=>x=12

b: =>(6x)^3=125

=>6x=5

=>x=5/6(loại)

c: =>\(7\cdot3^x\cdot\dfrac{1}{3}+11\cdot3^x\cdot3=318\)

=>3^x=9

=>x=2

d: -2x+13 chia hết cho x+1

=>-2x-2+15 chia hết cho x+1

=>15 chia hết cho x+1

=>x+1 thuộc {1;3;5;15}

=>x thuộc {0;2;4;14}

e: 4x+11 chia hết cho 3x+2

=>12x+33 chia hết cho 3x+2

=>12x+8+25 chia hết cho 3x+2

=>25 chia hết cho 3x+2

=>3x+2 thuộc {1;-1;5;-5;25;-25}

mà x là số tự nhiên

nên x=1

1: 

a: Đặt A=2^2024-2^2023-...-2^2-2-1

Đặt B=2^2023+2^2022+...+2^2+2+1

=>2B=2^2024+2^2023+...+2^3+2^2+2

=>B=2^2024-1

=>A=2^2024-2^2024+1=1

c: \(=\dfrac{3^{12}\cdot2^{11}+2^{10}\cdot3^{12}\cdot5}{2^2\cdot3\cdot3^{11}\cdot2^{11}}=\dfrac{2^{10}\cdot3^{12}\left(2+5\right)}{2^{13}\cdot3^{12}}\)

\(=\dfrac{7}{2^3}=\dfrac{7}{8}\)

1 tháng 1 2023

TK :

ta có 4A= 22 + 24 + 26 + 28 + ....+ 22024

từ đó 3A = 4A - A = 22 + 24 + ....  + 22024 - 1 + 22 + .... + 22022 = 22024 - 1

mà 2B = 22024

Từ đó dễ dàng suy ra được 3A và 2B là 2 số liên tiếp.

 

 

 

29 tháng 7 2023

a) \(S=1+2+2^2+2^3+...+2^{2022}=\dfrac{2^{2022+1}-1}{2-1}=2^{2023}-1\)

b) \(S=1+4+4^2+4^3+...+4^{2022}=\dfrac{4^{2022+1}-1}{4-1}=\dfrac{4^{2023}-1}{3}\)

29 tháng 7 2023

\(S=1+2+2^2+2^3+...+2^{2022}\\ 2S=2+2^2+2^3+2^4+...+2^{2023}\\ 2S-S=2+2^2+2^3+2^4+...+2^{2023}-1-2-2^2-2^3-...-2^{2022}\\ S=2^{2023}-1\\ S=4+4^2+4^3+...+4^{2022}\\ 4S=4^2+4^3+4^4+...+4^{2023}\\ 4S-S=4^2+4^3+4^4+...+4^{2023}-4-4^2-4^3-...-4^{2023}\\ 3S=4^{2023}-4\\ S=\dfrac{4^{2023}-4}{3}\)

 

9 tháng 1

Bài 1

a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³

2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴

S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)

= 2²⁰²⁴ - 1

b) B = 2²⁰²⁴

B - 1 = 2²⁰²⁴ - 1 = S

B = S + 1

Vậy B > S

NV
9 tháng 1

a,

\(S=1+2+2^2+...+2^{2023}\)

\(2S=2+2^2+2^3+...+2^{2024}\)

\(\Rightarrow S=2^{2024}-1\)

b.

Do \(2^{2024}-1< 2^{2024}\)

\(\Rightarrow S< B\)

2.

\(H=3+3^2+...+3^{2022}\)

\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)

\(\Rightarrow3H-H=3^{2023}-3\)

\(\Rightarrow2H=3^{2023}-3\)

\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)

16 tháng 8 2023

a) \(A=2+2^2+2^3+...+2^{2022}\)

\(2A=2.\left(2+2^2+2^3+...+2^{2022}\right)\)

\(2.A=2^2+2^3+2^4+...+2^{2023}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{2023}\right)-\left(2+2^2+2^3+...+2^{2022}\right)\)

\(A=2^{2023}-2\)

b) A + 2 = 2x

Hay \(\left(2^{2023}-2\right)+2=2^x\)

\(2^{2023}-2+2=2^x\)

\(2^{2023}=2^x\)

\(\Rightarrow x=2023\)

 

 

16 tháng 8 2023

   a, A = 21 + 22 + 23 + ...+ 22022

     2A =         22 + 23 +...+ 22022 + 22023

2A - A = 22023 - 21 

       A = 22023 - 2 

b,   A + 2  = 2\(^x\)  ⇒ 22023 - 2  + 2 = 2\(x\) 

                            22023               = 2\(^x\)

                           2023                 = \(x\)