Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TK :
ta có 4A= 22 + 24 + 26 + 28 + ....+ 22024
từ đó 3A = 4A - A = 22 + 24 + .... + 22024 - 1 + 22 + .... + 22022 = 22024 - 1
mà 2B = 22024
Từ đó dễ dàng suy ra được 3A và 2B là 2 số liên tiếp.
22A=22+24+26+28+...+22024
4A-A=22024-1
3A=22024-1
2B=22023.2=22024
=> 3A và 2B là 2 stn liên tiếp
A = 1 + 22 + 24 + 26 +...+22022
22A = 22 + 24 + 26 +....+ 22022 + 22024
4A - A = 22024 - 1
3A = 22024 - 1 (1)
B = 22023
2B = 22024 (2)
Từ (1) và (2) ta có 2B - 3A = 22024 - 22024- (-1) = 1;
mà 2B và 3A đều là số tự nhiên
Vậy 2B và 3A là 2 số tự nhiên liên tiếp vì chúng là hai số tự nhiên hơn kém nhau 1 đơn vị ( đpcm)
\(A=1+2+2^2+...+2^{2020}+2^{2021}\\ \Rightarrow2A=2+2^2+2^3+...+2^{2021}+2^{2022}\\ \Rightarrow2A-A=A=2^{2022}-1\)
Vậy \(A\) và \(B\) là 2 số tự nhiên liên tiếp.
Câu 1:
$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$
$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$
$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$
-----------------
$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$
$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$
$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$
$=2+7(2^2+2^5+...+2^{2018})$
$\Rightarrow A$ chia $7$ dư $2$.
Câu 2:
$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$
$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$
-------------------
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$
$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)
Ta có \(4A=2^2+2^4+2^6+2^8...+2^{2024}\)
Từ đó \(3A=4A-A=\left(2^2+2^4+...+2^{2024}\right)-\left(1+2^2+...+2^{2022}\right)\)
\(=2^{2024}-1\)
Mà \(2B=2^{2024}\)
Từ đó dễ dàng suy ra được \(3A\) và \(2B\) là 2 số liên tiếp.
Có 7 số tự nhiên được chọn sao cho tổng của hai số bất kì trong các số đó đều chia hết cho 7. Hỏi trong các số đó, có bao nhiêu số chia hết cho 7?
a) A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²
2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³
A = 2A - A
= (2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²)
= 2²⁰²³ - 2⁰
= 2²⁰²³ - 1
Vậy A = B
b) A = 2021 . 2023
= (2022 - 1).(2022 + 1)
= 2022.(2022 + 1) - 2022 - 1
= 2022² + 2022 - 2022 - 1
= 2022² - 1 < 2022²
Vậy A < B
\(A=2+2^2+2^3+...+2^{2020}+2^{2021}+2^{2022}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{2021}+2^{2022})\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+...+2^{2021}\cdot(1+2)\\=2\cdot3+2^3\cdot3+2^5\cdot3+...+2^{2021}\cdot3\\=3\cdot(2+2^3+2^5+..+2^{2021})\)
Vì \(3\cdot\left(2+2^3+2^5+...+2^{2021}\right)⋮3\)
nên \(A⋮3\).
\(Toru\)
A=(2+22)+22(2+22)+...+22020(2+22)
A= 6.1+22.6+...+22020.6
A=6(1+22+...+22020) chia hết cho 3
vậy A chia hết cho 3
4A=2^2+2^4+...+2^2024
=>3A=2^2024-1
2B=2^2024
=>3A và 2B là hai số tự nhiên liên tiếp