Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{5x-2}{x-2}=\frac{5x-10+8}{x-2}=5+\frac{8}{x-2}\)
A nguyên <=> \(x-2\inƯ\left(8\right)\)
Bạn liệt kê các ước của 8 rồi tính là ra kết quả
Để A nguyên thì 5x-2 chia hết cho x-2
Ta có:
5x-2 chia hết cho x-2
5x-10 chia hết cho x-2
8 chia hết cho x-2
Ta có bảng :
x-2 | 1 | 2 | 4 | 8 | -1 | -2 | -4 | -8 |
x | 3 | 4 | 6 | 10 | 1 | 0 | -2 | -6 |
\(\frac{2\sqrt{x}+3}{\sqrt{x}-2}=\frac{2\sqrt{x}-4+7}{\sqrt{x}-2}=\frac{2\left(\sqrt{x}-2\right)+7}{\sqrt{x}-2}=2+\frac{7}{\sqrt{x}-2}\)
Để \(2+\frac{7}{\sqrt{x}-2}\) là số nguyên <=> \(\frac{7}{\sqrt{x}-2}\) là số nguyên
=> \(\sqrt{x}-2\) thuộc ước của 7 là - 7 ; - 1; 1 ; 7
=> \(\sqrt{x}\) = { - 5; 1 ; 3 ; 9 }
=> x = { 1 ; 3 }
Online Math ác quá!!!!!!!!!!
Điểm hỏi đáp là 678
Giờ còn -978
huhuhuhuhuuhuhuhuh
Trừ 1300 điểm
Đề nghị Online Math coi lại cách trừ điểm
A=\(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\)=\(\frac{2\sqrt{x}-2+5}{\sqrt{x}-2}\)=2+\(\frac{5}{\sqrt{x}-2}\)
Để A thuộc Z => \(\frac{5}{\sqrt{x}-2}\)thuộc Z => \(\sqrt{x}\)-2 thuộc Ư(5)={-5 ; 5; 1 ;-1 }
\(\sqrt{x}\)-2 | -5 | -1 | 1 | 5 |
\(\sqrt{x}\) | -3 | 1 | 3 | 7 |
x | 9 | 1 | 9 | 49 |
KL: Với x thuộc {1; 9 ;49 } thì A thuộc Z
k cho mk nha :)
Để A nguyên thì \(\sqrt{x}-3⋮2\)
Do x < 30 nên \(\sqrt{x}< 6\) => \(\sqrt{x}-3< 3\)
Lại có: \(\sqrt{x}-3\ge-3\) do \(\sqrt{x}\ge0\)
=> \(\sqrt{x}-3\in\left\{2;0;-2\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{5;3;1\right\}\)
\(\Rightarrow x\in\left\{25;9;1\right\}\)
Vậy ...
a) Ta co \(A=\frac{4-x}{x-2}=\frac{-\left(x-4\right)}{x-2}=\frac{-\left(x-2\right)+2}{x-2}\)\(=\frac{-\left(x-2\right)}{x-2}+\frac{2}{x-2}\)\(=-1+\frac{2}{x-2}\)
De A nguyen <=> \(-1+\frac{2}{x-2}\)nguyen <=> \(2⋮x-2\)
=> \(x-2\in U\left\{2\right\}=\left\{-2:-1;1;2\right\}\)
\(x-2=-2\)=>\(x=0\)(thoa)
\(x-2=-1\)=>\(x=1\)(thoa)
\(x-2=1\)=>\(x=3\)(thoa)
\(x-2=2\)=>\(x=4\)(thoa)
xin loi mk lam duoc den day thoi
a) Ta có : \(A=\frac{4-x}{x-2}=\frac{-x+4}{x-2}=\frac{-\left(x-4\right)}{x-2}\)
\(=\frac{-\left(x-2-2\right)}{x-2}=-1+\frac{2}{x-2}\)
Do đó: A nguyên <=> \(\frac{2}{x-2}\) nguyên <=> 2 chia hết cho x -2 ( vì x - 2 thuộc Z )
<=> x -2 thuộc Ư(2) = { -1;1;-2;2 <=> x thuộc { 1; 3; 0; 4 }
Vậy x = ....................
b) Vì \(A=-1+\frac{2}{x-2}\) nên A đạt giá trị nhỏ nhất <=> 2/x-2 có giá trị nhỏ nhất
<=> x - 2 bé hơn 0 và có giá trị lớn nhất <=> x - 2 = -1 <=> x = 1
Khi đó : A = \(-1+\frac{2}{1-2}=-1-2=-3\)
Vậy .................................
\(A=\frac{5x-2}{x-2}=\frac{5\left(x-2\right)+10-2}{x-2}=\frac{5\left(x-2\right)}{x-2}+\frac{10-2}{x-2}=5+\frac{8}{x-2}\)
- Để A nguyên thì 8 phải chia hết cho x - 2
=>\(x-2\varepsilonƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
=> \(x\varepsilon\left\{-6;-2;0;1;3;4;6;10\right\}\)
Vậy:...
\(A=\frac{5x-2}{x-2}\)
\(=\frac{5x-10+8}{x-2}\)
\(=\frac{5\left(x-2\right)+8}{x-2}\)
\(=\frac{5\left(x-2\right)}{x-2}+\frac{8}{x-2}\)
\(=5+\frac{8}{x-2}\)
Để \(A\in Z\Rightarrow8⋮\left(x-2\right)\)
\(\Rightarrow x-2\in U\left(8\right)=\left\{1;2;4;8;-1;-2;-4;-8\right\}\)
\(\Rightarrow x=\left\{3;4;6;10;1;0;-2;-6\right\}\)
\(A=\frac{5\left(x-2\right)+8}{x-2}=5+\frac{8}{x-2}\)
Để A nguyên { \(\pm8;\pm4;\pm2\)}
\(\Rightarrow x\in\){1;3;4;-6;6;-2;10}