Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{\left(x-2\right)+\left(4x-8\right)+8}{x-2}\)=3+\(\frac{8}{x-2}\)
Để A nguyên thì \(\frac{8}{x-2}\)<=>x-2={\(\mp\)1;\(\mp\)2;\(\mp\)4:\(\mp\)8}<=>x={-4;-2;0;1;3;6;10)
Vậy các giá trị của x để A nguyên là -4;-2;0;1;3;6 và 10
\(A=\frac{5x-2}{x-2}=\frac{5.\left(x-2\right)+8}{x-2}=5+\frac{8}{x-2}\)
Để A nguyên nên 8 phải chia hết cho x-2
Lập bảng
\(A=\frac{5x-2}{x-2}=\frac{5x-10+8}{x-2}=5+\frac{8}{x-2}\)
A nguyên <=> \(x-2\inƯ\left(8\right)\)
Bạn liệt kê các ước của 8 rồi tính là ra kết quả
Để A nguyên thì 5x-2 chia hết cho x-2
Ta có:
5x-2 chia hết cho x-2
5x-10 chia hết cho x-2
8 chia hết cho x-2
Ta có bảng :
x-2 | 1 | 2 | 4 | 8 | -1 | -2 | -4 | -8 |
x | 3 | 4 | 6 | 10 | 1 | 0 | -2 | -6 |
1,b, 2xy - x = y + 5
<=> 4xy - 2x = 2y + 10
<=> 2x(2y - 1) - (2y - 1) = 11
<=> (2x - 1)(2y - 1) = 11
Lập bảng ra làm nốt
\(1,c,\frac{1}{x}-3=-\frac{1}{y-2}\)
\(\Leftrightarrow y-2-3x\left(y-2\right)=-x\)
\(\Leftrightarrow y-2-3xy+6x+x=0\)
\(\Leftrightarrow-3xy+7x+y-2=0\)
\(\Leftrightarrow-x\left(3y-7\right)+y-2=0\)
\(\Leftrightarrow-3x\left(3y-7\right)+3y-6=0\)
\(\Leftrightarrow-3x\left(3y-7\right)+\left(3y-7\right)=-1\)
\(\Leftrightarrow\left(1-3x\right)\left(3y-7\right)=-1\)
Lập bảng làm nốt
ta thấy rằng 5 phải chia hết cho a tức là
a(U)5=1,-1;5,-5
vậy a 1,-1,5,-5 thì x có giá trị nguyên
a: ĐKXĐ: x>0
Để A là số nguyên thì \(7⋮\sqrt{x}\)
=>\(\sqrt{x}\in\left\{1;7\right\}\)
=>\(x\in\left\{1;49\right\}\)
b: ĐKXĐ: x>1
Để B là số nguyên thì \(3⋮\sqrt{x-1}\)
=>\(\sqrt{x-1}\in\left\{1;3\right\}\)
=>\(x-1\in\left\{1;9\right\}\)
=>\(x\in\left\{2;10\right\}\)
c: ĐKXĐ: x>3
Để C là số nguyên thì \(2⋮\sqrt{x-3}\)
=>\(\sqrt{x-3}\in\left\{1;2\right\}\)
=>\(x-3\in\left\{1;4\right\}\)
=>\(x\in\left\{4;7\right\}\)
Để A nguyên thì 5x-2 chia hết cho x-2
5(x-2)+10-2 chia hết cho x-2
5(x-2)+8 chia hết cho x-2
vì 5(x-2)chia hết cho x-2 nên 8 chia hết cho x-2
nên x-2 thuộc Ư(8)
mà x nguyên suy ra x-2 thuộc{ -8; -4 ; -2; -1; 1 ; 2 ;4 ;8}
x thuộc{ -6 ; -2; 0; 1; 3; 4; 6; 10}