Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9x^2+12x-4y^2-17=0\)
\(\Leftrightarrow\left(3x+2\right)^2-4y^2-21=0\)
\(\Leftrightarrow\left(3x+2y+2\right)\left(3x-2y+2\right)=21\)
Xét
TH1:\(\hept{\begin{cases}3x+2y+2=1\\3x-2y+2=21\end{cases}\Leftrightarrow x=3;y=-5\left(thỏa\right)}\)
TH2:\(\hept{\begin{cases}3x+2y+2=21\\3x-2y+2=1\end{cases}\Leftrightarrow x=3;y=5\left(thỏa\right)}\)
TH3:\(\hept{\begin{cases}3x+2y+2=-1\\3x-2y+2=-21\end{cases}\Leftrightarrow x=\frac{-13}{3};y=5\left(k.thỏa\right)}\)
TH4:\(\hept{\begin{cases}3x+2y+2=-21\\3x-2y+2=-1\end{cases}\Leftrightarrow x=\frac{-13}{3};y=-5\left(k.thỏa\right)}\)
TH5:\(\hept{\begin{cases}3x+2y+2=3\\3x-2y+2=7\end{cases}\Leftrightarrow x=1;y=-1\left(thỏa\right)}\)
TH6:\(\hept{\begin{cases}3x+2y+2=7\\3x-2y+2=3\end{cases}\Leftrightarrow x=y=1\left(thỏa\right)}\)
TH7:\(\hept{\begin{cases}3x+2y+2=-3\\3x-2y+2=-7\end{cases}\Leftrightarrow x=\frac{-7}{3};y=1\left(k.thỏa\right)}\)
TH7:\(\hept{\begin{cases}3x+2y+2=-7\\3x-2y+2=-3\end{cases}\Leftrightarrow x=\frac{-7}{3};y=-1\left(k.thỏa\right)}\)
Vậy \(\left(a;b\right)=\left(3;5\right)=\left(3;-5\right)=\left(1;1\right)=\left(1;-1\right)\)
\(\sqrt{9x^2+12x+4}=4\Leftrightarrow\sqrt{\left(3x+2\right)^2}=4\Leftrightarrow\left|3x+2\right|=4\)
- Với \(x\ge-\frac{2}{3}\), phương trình tương đương với \(3x+2=4\Leftrightarrow x=\frac{2}{3}\left(TM\right)\)
- Với \(x< -\frac{2}{3}\), phương trình tương đương với \(3x+2=-4\Leftrightarrow x=-2\)(TM)
Vậy tập nghiệm của phương trình : \(S=\left\{-2;\frac{2}{3}\right\}\)
Ta có \(VT=2+\sqrt{200-\left(x^2+2x+1\right)}=2+\sqrt{200-\left(x+1\right)^2}\)
Để VT xác định thì \(\left(x+1\right)^2\le200\left(1\right)\)
Mà \(VP⋮2\) nên \(\sqrt{200-\left(x+1\right)^2}⋮2\Leftrightarrow200-\left(x+1\right)^2⋮4\)
Mà \(200⋮4\) nên \(\left(x+1\right)^2⋮4\left(2\right)\)
Mà \(\left(x+1\right)^2\) là số chính phương \(\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Leftrightarrow\left(x+1\right)^2\in\left(0;4\right)\Leftrightarrow x+1\in\left\{-2;0;2\right\}\Leftrightarrow x\in\left\{-3;-1;1\right\}\)
Từ đó tính y nha
Không biết là đúng không nữa cơ.
Ta có: \(4y^2=2+\sqrt{199-x^2-2x}=2+\sqrt{200-\left(x+1\right)^2}\le2+\sqrt{200}\)
\(\Rightarrow y^2\le\dfrac{1+5\sqrt{2}}{2}\Leftrightarrow-\sqrt{\dfrac{1+5\sqrt{2}}{2}}\le y\le\sqrt{\dfrac{1+5\sqrt{2}}{2}}\)
Mà y là số nguyên dương \(\Rightarrow1\le y\le2\Rightarrow y\in\left\{1;2\right\}\)
Tìm được y rồi thì tìm x nha.
1)Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) chia hết (x3+x) => (xy-1) chia hết x(x2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d chia hết x => d chia hết xy => d chia hết 1).
Nên từ (1) ta có:
(xy-1) chia hết (x2+1)
=> (xy-1) chia hết (x2+1+xy -1) => (xy-1) chia hết (x2+xy) => (xy-1) chia hết x(x+y) => (xy-1) chia hết (x+y)
Điều đó có nghĩa là tồn tại z \(\in\) N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
Do vai trò bình đẳng nên ta giả sử: x \(\ge\) y \(\ge\) z.
Từ (2) ta có: x+y+z \(\le\) 3x => 3x \(\ge\) xyz => 3 \(\ge\) yz \(\ge\) z2 => z=1
=> 3 \(\ge\) y => y \(\in\) {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x\(\ge\)y)
Vậy khi x \(\ge\) y \(\ge\) z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
2)\(\Leftrightarrow\sqrt{12x^2-12x+7}+\sqrt{8x^2-8x+3}=-4x^2+4x+2\)
\(\Leftrightarrow\sqrt{12x^2-12x+7}+\sqrt{8x^2-8x+3}+4x^2-4x-2=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Ta có \(3x^2-12x+16=3\left(x-2\right)^2+4\ge4\to\sqrt{3x^2-12x+16}\ge\sqrt{4}=2.\)
Tương tự \(y^2-4y+13=\left(y-2\right)^2+9\ge9\to\sqrt{y^2-4y+13}\ge3\)
Vậy vế ta có \(\sqrt{3x^2-12x+16}+\sqrt{y^2-4y+13}\ge2+3=5.\) Để dấu bằng xảy ra thì \(x=y=2.\)
Đáp số \(x=y=2.\)
\(9x^2+12x+21=4y^2\)
\(\Leftrightarrow4y^2-\left(9x^2+12x+4\right)=17\)
\(\Leftrightarrow\left(2y\right)^2-\left(3x+2\right)^2=17\)
\(\Leftrightarrow\left(2y-3x-2\right)\left(2y+3x+2\right)=17=1.17\)
Ta có bảng giá trị:
Vậy phương trình không có nghiệm nguyên.