K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
21 tháng 9 2021

\(9x^2+12x+21=4y^2\)

\(\Leftrightarrow4y^2-\left(9x^2+12x+4\right)=17\)

\(\Leftrightarrow\left(2y\right)^2-\left(3x+2\right)^2=17\)

\(\Leftrightarrow\left(2y-3x-2\right)\left(2y+3x+2\right)=17=1.17\)

Ta có bảng giá trị: 

2y-3x-2117-1-17
2y+3x+2171-17-1
x2-10/3 (l)-10/3 (l)2
y9/2 (l)  9/2 (l)

Vậy phương trình không có nghiệm nguyên. 

12 tháng 7 2016

\(9x^2+12x-4y^2-17=0\)

\(\Leftrightarrow\left(3x+2\right)^2-4y^2-21=0\)

\(\Leftrightarrow\left(3x+2y+2\right)\left(3x-2y+2\right)=21\)

Xét 

TH1:\(\hept{\begin{cases}3x+2y+2=1\\3x-2y+2=21\end{cases}\Leftrightarrow x=3;y=-5\left(thỏa\right)}\)

TH2:\(\hept{\begin{cases}3x+2y+2=21\\3x-2y+2=1\end{cases}\Leftrightarrow x=3;y=5\left(thỏa\right)}\)

TH3:\(\hept{\begin{cases}3x+2y+2=-1\\3x-2y+2=-21\end{cases}\Leftrightarrow x=\frac{-13}{3};y=5\left(k.thỏa\right)}\)

TH4:\(\hept{\begin{cases}3x+2y+2=-21\\3x-2y+2=-1\end{cases}\Leftrightarrow x=\frac{-13}{3};y=-5\left(k.thỏa\right)}\)

TH5:\(\hept{\begin{cases}3x+2y+2=3\\3x-2y+2=7\end{cases}\Leftrightarrow x=1;y=-1\left(thỏa\right)}\)

TH6:\(\hept{\begin{cases}3x+2y+2=7\\3x-2y+2=3\end{cases}\Leftrightarrow x=y=1\left(thỏa\right)}\)

TH7:\(\hept{\begin{cases}3x+2y+2=-3\\3x-2y+2=-7\end{cases}\Leftrightarrow x=\frac{-7}{3};y=1\left(k.thỏa\right)}\)

TH7:\(\hept{\begin{cases}3x+2y+2=-7\\3x-2y+2=-3\end{cases}\Leftrightarrow x=\frac{-7}{3};y=-1\left(k.thỏa\right)}\)

Vậy \(\left(a;b\right)=\left(3;5\right)=\left(3;-5\right)=\left(1;1\right)=\left(1;-1\right)\)

4 tháng 12 2016

chtt đi bạn

10 tháng 7 2016

\(\sqrt{9x^2+12x+4}=4\Leftrightarrow\sqrt{\left(3x+2\right)^2}=4\Leftrightarrow\left|3x+2\right|=4\)

  • Với \(x\ge-\frac{2}{3}\), phương trình tương đương với \(3x+2=4\Leftrightarrow x=\frac{2}{3}\left(TM\right)\)
  • Với \(x< -\frac{2}{3}\), phương trình tương đương với \(3x+2=-4\Leftrightarrow x=-2\)(TM)

Vậy tập nghiệm của phương trình : \(S=\left\{-2;\frac{2}{3}\right\}\)

15 tháng 8 2023

Có : x2 - y2 + 2x - 4y - 10 = 0

<=> (x + 1)2 - (y + 2)2 = 7

<=> (x + y + 3)(x - y - 1) = 7

Lập bảng ta được 

x + y + 3 7 1 -1 -7
x - y - 1 1 7 -7 -1
x 3 3 -5 -5
y 1 -5 1 -5

Vì x,y \(\inℕ^∗\) nên (x;y) = (3;1) là giá trị thỏa mãn

21 tháng 8 2021

Ta có \(VT=2+\sqrt{200-\left(x^2+2x+1\right)}=2+\sqrt{200-\left(x+1\right)^2}\)

Để VT xác định thì \(\left(x+1\right)^2\le200\left(1\right)\)

Mà \(VP⋮2\) nên \(\sqrt{200-\left(x+1\right)^2}⋮2\Leftrightarrow200-\left(x+1\right)^2⋮4\)

Mà \(200⋮4\) nên \(\left(x+1\right)^2⋮4\left(2\right)\)

Mà \(\left(x+1\right)^2\) là số chính phương \(\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Leftrightarrow\left(x+1\right)^2\in\left(0;4\right)\Leftrightarrow x+1\in\left\{-2;0;2\right\}\Leftrightarrow x\in\left\{-3;-1;1\right\}\)

Từ đó tính y nha

 

 

21 tháng 8 2021

Không biết là đúng không nữa cơ.

Ta có: \(4y^2=2+\sqrt{199-x^2-2x}=2+\sqrt{200-\left(x+1\right)^2}\le2+\sqrt{200}\)

\(\Rightarrow y^2\le\dfrac{1+5\sqrt{2}}{2}\Leftrightarrow-\sqrt{\dfrac{1+5\sqrt{2}}{2}}\le y\le\sqrt{\dfrac{1+5\sqrt{2}}{2}}\)

Mà y là số nguyên dương \(\Rightarrow1\le y\le2\Rightarrow y\in\left\{1;2\right\}\)

Tìm được y rồi thì tìm x nha.

22 tháng 5 2016

1)Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 

(xy-1) chia hết (x3+x) => (xy-1) chia hết x(x2+1) (1) 

Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d chia hết x => d chia hết xy => d chia hết 1). 

Nên từ (1) ta có: 

(xy-1) chia hết (x2+1) 

=> (xy-1) chia hết (x2+1+xy -1) => (xy-1) chia hết (x2+xy) => (xy-1) chia hết x(x+y) => (xy-1) chia hết (x+y) 

Điều đó có nghĩa là tồn tại z \(\in\) N* sao cho: 

x+y = z(xy-1) <=> x+y+z =xyz (2) 

Do vai trò bình đẳng nên ta giả sử: x \(\ge\) y \(\ge\) z. 

Từ (2) ta có: x+y+z \(\le\) 3x => 3x \(\ge\) xyz => 3 \(\ge\) yz \(\ge\) z2 => z=1 

=> 3 \(\ge\) y => y \(\in\) {1;2;3} 

Nếu y=1: x+2 =x (loại) 

Nếu y=2: (2) trở thành x+3 =2x => x=3 

Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x\(\ge\)y) 

Vậy khi x \(\ge\) y \(\ge\) z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)

2)\(\Leftrightarrow\sqrt{12x^2-12x+7}+\sqrt{8x^2-8x+3}=-4x^2+4x+2\)

\(\Leftrightarrow\sqrt{12x^2-12x+7}+\sqrt{8x^2-8x+3}+4x^2-4x-2=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

22 tháng 5 2016

cách làm đúng nhưng đoạn đầu của bài 1 bị ngược rồi ạ

26 tháng 8 2015

Ta có  \(3x^2-12x+16=3\left(x-2\right)^2+4\ge4\to\sqrt{3x^2-12x+16}\ge\sqrt{4}=2.\)

Tương tự \(y^2-4y+13=\left(y-2\right)^2+9\ge9\to\sqrt{y^2-4y+13}\ge3\)

Vậy vế ta có \(\sqrt{3x^2-12x+16}+\sqrt{y^2-4y+13}\ge2+3=5.\) Để dấu bằng xảy ra thì \(x=y=2.\)

Đáp số \(x=y=2.\)