\(\sqrt{3x^2-12x+16}\)\(+\sqrt{y^2-4y+13}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2015

Ta có  \(3x^2-12x+16=3\left(x-2\right)^2+4\ge4\to\sqrt{3x^2-12x+16}\ge\sqrt{4}=2.\)

Tương tự \(y^2-4y+13=\left(y-2\right)^2+9\ge9\to\sqrt{y^2-4y+13}\ge3\)

Vậy vế ta có \(\sqrt{3x^2-12x+16}+\sqrt{y^2-4y+13}\ge2+3=5.\) Để dấu bằng xảy ra thì \(x=y=2.\)

Đáp số \(x=y=2.\)

4 tháng 8 2018

a) Đk: x \(\ge\) 5

\(\sqrt{x-5}-\frac{x-14}{3x+\sqrt{x-5}}=3\)

\(\sqrt{x-5}\left(3+\sqrt{x-5}\right)-\frac{x-14}{3\sqrt{x-3}}\left(3+\sqrt{x-5}\right)=3\left(3+\sqrt{x-5}\right)\)

\(\sqrt{x-5}\left(3+\sqrt{x-5}\right)-\left(x-14\right)=3\left(3+\sqrt{x-5}\right)\)

\(3\sqrt{x-5}+9-\left(3\sqrt{x-5}+9\right)=9+3\sqrt{x-5}-\left(3\sqrt{x-5}+9\right)\)

=> Luôn đúng với x \(\ge\) 5

chúc bạn học tốt 

13 tháng 9 2018

Ai còn onl ko kb vs mk bùn quá!!!

22 tháng 7 2019

a) ĐK: x2 - 7x + 8 ≥ 0

Đặt √(x2 - 7x + 8) = a (1)

⇔ a2 + a - 20 = 0

⇔ a = 4 hoặc a = -5

Thay vào (1) là tìm được x, kết hợp với ĐK là xong.

22 tháng 7 2019

b) Dễ chứng minh Vế Trái lớn hơn hoặc bằng 0.

Dấu "=" xảy ra khi x = -4; y=​ 4. ....... là nghiệm của pt

12 tháng 10 2017

a) Đặt \(\left(x^2-7x;\sqrt{x^2-7x+8}\right)=\left(a;b\right)\left(b\ge0\right)\)

Phương trình đã cho tương đương với hệ

\(\left\{{}\begin{matrix}a+b=12\\b^2-a=8\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=12\\b^2+b=20\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=20\\\left[{}\begin{matrix}b=4\\b=-5\end{matrix}\right.\end{matrix}\right.\)(Loại no -5)

\(\left\{{}\begin{matrix}a=16\\b=4\end{matrix}\right.\)

Thay a;b vào chỗ đặt ban đầu, giải phương trình bậc 2 tìm nghiệm

12 tháng 10 2017

c) Đặt \(\left(\sqrt{x-3};\sqrt{5-x}\right)=\left(a;b\right)\)

\(\left\{{}\begin{matrix}a+b=-\left(ab+3\right)\\a^2+b^2=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=-3-ab\\\left(a+b\right)^2-2ab=2\end{matrix}\right.\)

Lại đặt \(\left(a+b;ab\right)=\left(z;t\right)\)

\(\left\{{}\begin{matrix}z=-3-t\\z^2-2t=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}z=-3-t\\z^2-2\left(-3-z\right)=2\end{matrix}\right.\)

Tiếp tục giải ;v

18 tháng 12 2015

b/ \(\Rightarrow2x+3+2\sqrt{2x+3}-x^2-6x-8=0\)

Đặt \(a=\sqrt{2x+3}\left(a\ge0\right)\)

\(\left(1\right)\Rightarrow a^2+2a-x^2-6x-8=0\)

Có: \(\Delta=1+x^2+6x+8=x^2+6x+9=\left(x+3\right)^2\)

\(\Rightarrow\sqrt{\Delta}=x+3\)

\(\Rightarrow a=\frac{-1+x+3}{1}=x+2\)

hoặc \(a=\frac{-1-x-3}{1}=-x-4\)

+) Với a = x + 2 \(\Leftrightarrow\sqrt{2x+3}=x+2\left(x\ge-2\right)\) 

......... tự giải ra x

+) Với a = -x - 4  \(\Leftrightarrow\sqrt{2x+3}=-x-4\left(x\le-4\right)\)

.........tự giải ra x

4 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

13 tháng 7 2018

Biết đâu làm đó , sai thôi đừngg chửi nhé

1, Rút gọn

a) A = \(\dfrac{x+\sqrt{xy}}{y+\sqrt{xy}}\) = \(\dfrac{\left(\sqrt{x}\right)^2+\sqrt{xy}}{\left(\sqrt{y}\right)^2+\sqrt{xy}}\) = \(\dfrac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{y}+\sqrt{x}\right)}\) = \(\dfrac{\sqrt{x}}{\sqrt{y}}\)

b) B = \(\sqrt{\dfrac{\left(a-b\right)^3.b^3}{c}}\) . \(\sqrt{\dfrac{bc^3}{\left(a-b\right)}}\)

= \(\sqrt{\dfrac{\left(a-b\right)^3.b^3}{c}.\dfrac{bc^3}{\left(a-b\right)}}\) = \(\sqrt{\left(a-b\right)^2.b^4.c^2}\)

= \(\left|a-b\right|\) . \(\left|b^2\right|\) . \(\left|c\right|\)

= -(a -b) .b2. c

13 tháng 7 2018

bài 2:

a/ \(\sqrt{x^2-4}-\sqrt{x-2}=0\) đk: x≥2

<=> \(\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)

<=>\(\left[{}\begin{matrix}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)

vậy pt có 1 nghiệm x = 2

b/ \(\sqrt{3x^2+12x+16}+\sqrt{y^2-4y+13}=5\)

Ta có: \(\sqrt{3x^2+12x+16}+\sqrt{y^2-4y+13}=\sqrt{3\left(x^2+4x+4\right)+4}+\sqrt{\left(y^2-4y+4\right)+9}=\sqrt{3\left(x+2\right)^2+4}+\sqrt{\left(y-2\right)^2+9}\ge\sqrt{4}+\sqrt{9}=2+3=5\)

=> Dấu ''='' xảy ra khi x = -2; y = 2

Vậy pt có nghiệm x=-2; y = 2

30 tháng 9 2017

Rút gọn biểu thức chứa căn bậc hai

30 tháng 9 2017

Rút gọn biểu thức chứa căn bậc hai