\(\frac{x^3+x}{xy-1}\) là số nguyên dương

2, Gi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2016

1)Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 

(xy-1) chia hết (x3+x) => (xy-1) chia hết x(x2+1) (1) 

Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d chia hết x => d chia hết xy => d chia hết 1). 

Nên từ (1) ta có: 

(xy-1) chia hết (x2+1) 

=> (xy-1) chia hết (x2+1+xy -1) => (xy-1) chia hết (x2+xy) => (xy-1) chia hết x(x+y) => (xy-1) chia hết (x+y) 

Điều đó có nghĩa là tồn tại z \(\in\) N* sao cho: 

x+y = z(xy-1) <=> x+y+z =xyz (2) 

Do vai trò bình đẳng nên ta giả sử: x \(\ge\) y \(\ge\) z. 

Từ (2) ta có: x+y+z \(\le\) 3x => 3x \(\ge\) xyz => 3 \(\ge\) yz \(\ge\) z2 => z=1 

=> 3 \(\ge\) y => y \(\in\) {1;2;3} 

Nếu y=1: x+2 =x (loại) 

Nếu y=2: (2) trở thành x+3 =2x => x=3 

Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x\(\ge\)y) 

Vậy khi x \(\ge\) y \(\ge\) z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)

2)\(\Leftrightarrow\sqrt{12x^2-12x+7}+\sqrt{8x^2-8x+3}=-4x^2+4x+2\)

\(\Leftrightarrow\sqrt{12x^2-12x+7}+\sqrt{8x^2-8x+3}+4x^2-4x-2=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

22 tháng 5 2016

cách làm đúng nhưng đoạn đầu của bài 1 bị ngược rồi ạ

24 tháng 5 2017

Điều kiện \(x\ne0\)

\(A=\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)

\(=\sqrt{\frac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}\)

\(=\left|\frac{x^2+3}{x}\right|+\left|x-2\right|\)

\(=\left|x+\frac{3}{x}\right|+\left|x-2\right|\)

Để A nguyên thì x phải là ước nguyên của 3 hay \(x=-3;-1;1;3\)

22 tháng 7 2019

xin chào bạn

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!

3 tháng 10 2016

Hai câu còn lại bạn tự làm nhé :)

3 tháng 10 2016

1/ \(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

Suy ra MIN A = \(-\sqrt{2}\)khi  \(x=y=z=-\frac{\sqrt{2}}{3}\)

5 tháng 8 2018

Bài 1:

\(\sqrt{24+8\sqrt{15}-\sqrt{9-4\sqrt{5}}}\)

\(=\sqrt{24+8\sqrt{15}-\left(\sqrt{5}-2\right)}\)

\(=\sqrt{26+8\sqrt{15}-\sqrt{5}}\)

Bài 2:

\(A=\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)

\(A=\sqrt{\frac{x^4+6x^2+9}{x^2}}\)

\(A=\frac{\sqrt{x^4+6x^2+9}}{\sqrt{x^2}}\)

\(A=\frac{\sqrt{\left(x^2+3\right)^2}}{x}\)

\(A=\frac{x^2+3}{x}\)

\(A=\frac{x^2+3}{x}+x-2\)

\(A=\frac{2x^2+3}{x}-2\)

wrecking ball sai rồi \(\frac{\sqrt{\left(x^2+3\right)^2}}{x}=\frac{trituyetdoix^2+3}{x}\) bằng 

18 tháng 9 2020

B1:

\(C=\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)

\(=\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)\)

\(=\sqrt{3^2-\left(\sqrt{5}\right)^2}\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)\)

\(=\sqrt{2}\left(\sqrt{3-\sqrt{5}}.\sqrt{2}+\sqrt{3+\sqrt{5}}.\sqrt{2}\right)\)

\(=\sqrt{2}\left(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\right)\)

\(=\sqrt{2}\left(\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}\right)\)

\(=\sqrt{2}\left(\sqrt{5}-1+\sqrt{5}+1\right)=2\sqrt{10}\)