\(\in\)N để \(x^2+4x+115\)là sô chính phương

 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

Dễ vậy cũng không biết,ngốc vải

11 tháng 4 2017

dễ thì làm đi ko thì đừng có nói 

a, \(x^3+2\sqrt{2}x^2+2x=0\)

\(x\left(x^2+2\sqrt{2}x+2\right)+0\)

\(x\left(x+\sqrt{2}\right)^2=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+\sqrt{2}=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-\sqrt{2}\end{cases}}\)

Vậy x = 0 ; x = \(-\sqrt{2}\)

b,vì  \(n^2+n+1\)là số chính phương nên đặt \(n^2+n+1=a^2\)với \(a\in N\)

\(n^2+n+1=a^2\)

\(\Leftrightarrow4n^2+4n+4=4a^2\)

\(\Leftrightarrow4n^2+4n+1+3=4a^2\)

\(\Leftrightarrow\left(2n+1\right)^2+3=4a^2\)

\(\Leftrightarrow4a^2-\left(2n+1\right)^2=3\)

\(\Leftrightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=3\)

Ta thấy \(\hept{\begin{cases}2a-2n-1=1\\2a+2n+1=3\end{cases}}\) Vì \(\left(2a+2n+1>2a-2n-1>0\right)\)

\(\Leftrightarrow\hept{\begin{cases}2\left(a-n\right)=2\\2\left(a+n\right)=2\end{cases}\Leftrightarrow}\hept{\begin{cases}a-n=1\\a+n=1\end{cases}}\)

\(a-n=1\Rightarrow a=1+n\)

\(\Rightarrow1+n+n=1\)

\(\Leftrightarrow2n=1-1\)

\(\Leftrightarrow2n=0\)

\(\Leftrightarrow n=0\)

7 tháng 6 2018

Đặt \(n^2+n+6=a^2\)

\(\Leftrightarrow4n^2+4n+24=4a^2\)

\(\Leftrightarrow4n^2+4n+1+23=4a^2\)

\(\Leftrightarrow\left(2n+1\right)^2+23=4a^2\)

\(\Leftrightarrow4a^2-\left(2n+1\right)^2=23\)

\(\Leftrightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=23\)

\(\forall n\in N\)thì \(2a+2n+1>2a-2n-1>0\)

\(\Rightarrow\left\{{}\begin{matrix}2a+2n+1=23\\2a-2n-1=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=6\\n=5\end{matrix}\right.\)

Vậy n = 5

29 tháng 11 2016

n = 5 nha bạn

\(5^2+5+6=36\\ 36=6^2\)

30 tháng 11 2016

Ta có

n2 < n2 + n + 6 < n2 + 3n + 9

<=> n2 < n2 + n + 6 < (n + 3)2

<=> (n2 + n + 6) = [(n + 1)2; (n + 2)2]

Thế vô tìm được n = 5

9 tháng 11 2017

Tìm n đề cho đa thức theo biến x là số chính phương. Ai làm cho nổi. 

9 tháng 11 2017

alibaba nguyễn tôi thấy hình như đề sai