K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

Câu hỏi của Nguyễn Chí Nhân - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo link này nhé!

14 tháng 12 2019

kết bạn vs mị ik

NV
7 tháng 9 2021

2.

a.

\(x^2+3x=k^2\)

\(\Leftrightarrow4x^2+12x=4k^2\)

\(\Leftrightarrow4x^2+12x+9=4k^2+9\)

\(\Leftrightarrow\left(2x+3\right)^2=\left(2k\right)^2+9\)

\(\Leftrightarrow\left(2x+3\right)^2-\left(2k\right)^2=9\)

\(\Leftrightarrow\left(2x+3-2k\right)\left(2x+3+2k\right)=9\)

2x+3-2k-9-3-1139
2x+3+2k-1-3-9931
x-4-3-4101
 nhậnnhậnnhậnnhậnnhậnnhận

Vậy \(x=\left\{-4;-3;0;1\right\}\)

b. Tương tự

\(x^2+x+6=k^2\)

\(\Leftrightarrow4x^2+4x+24=4k^2\)

\(\Leftrightarrow\left(2k\right)^2-\left(2x+1\right)^2=23\)

\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=23\)

Em tự lập bảng tương tự câu trên

NV
7 tháng 9 2021

1.

\(\Leftrightarrow x^2-2xy+y^2=-4y^2+y+1\)

\(\Leftrightarrow-4y^2+y+1=\left(x-y\right)^2\ge0\)

\(\Leftrightarrow-64y^2+16y+16\ge0\)

\(\Leftrightarrow\left(8y-1\right)^2\le17\)

\(\Rightarrow\left(8y-1\right)^2\le16\)

\(\Rightarrow-4\le8y-1\le4\)

\(\Rightarrow-\dfrac{3}{8}\le y\le\dfrac{5}{8}\)

\(\Rightarrow y=0\)

Thế vào pt ban đầu:

\(\Rightarrow x^2=1\Rightarrow x=\pm1\)

Vậy \(\left(x;y\right)=\left(-1;0\right);\left(1;0\right)\)

11 tháng 8 2016

Đặt \(k^2=n^2+31n+1984\) (k thuộc N)

Ta có \(n^2+30n+225< n^2+31n+1984< n^2+90n+2025\)

\(\Rightarrow\left(n+15\right)^2< k^2< \left(n+45\right)^2\)

Xét k2 trong khoảng trên được n = 565 và n = 1728 thỏa mãn đề bài.

17 tháng 6 2020

Cho mình hỏi tại sao lại xét \(k^2\) nằm trong hai khoảng đó vâỵ ạ. Ta

có thể thay thế \(n^2+90n+2025\) bằng một biểu thức khác được không và tại sao ạ ?

Mong sớm nhận được phản hồi ạ. mình cảm ơn

20 tháng 4 2019

bài 1:

thấy B chia 4 dư 2

=> B ko phải là scp

20 tháng 4 2019

Tại sao B chia 4 dư 2 ? 

14 tháng 7 2016

Ta có: \(n^4+n^3+n^2=n^2\left(n^2+n+1\right)\)

Theo đề ra thì \(n^2\left(n^2+n+1\right)\) mà \(n^2\)là một số chính phương \(\Rightarrow n^2+n+1\)là 1 số chính phương.

Gọi \(n^2+n+1=k^2\) =>\(4n^2+4n+1+3\)\(4k^2\)

=> \(\left(2n+1\right)^2+3=4k^2\) => \(\left(2k-2n-1\right)\left(2k+2n+1\right)=3\)

\(\Leftrightarrow2k-2n-1;2k+2n+1\inƯ\left(3\right)=\left\{3;1;-3;-1\right\}\)Và \(2k-2n-1;2k+2n+1\)phải đồng âm hoặc đồng dương,

Ta có bảng sau: 

\(2k-2n-1\)13-1-3
\(2k+2n+1\)31-3-1
\(2k-2n\)240-2
\(2k+2n\)20-4-2
\(n\)0-1-10

Vậy n thỏa mãn đề bài là n=0 hoặc n=-1

7 tháng 10 2017

a, Vì n \(\in\)N => n là số chính phương

mà 9 = 32 là số chính phương

=> n2 + 9 là số chính phương.

Vậy A = n2 + 9 là số chính phương.

CHÚC BẠN HỌC TỐT!!!!

22 tháng 1 2023

chứng minh kiểu j vậy?

sai bét