Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đang bận nên hướng dẫn
a )Đặt \(n^2-n+2=a^2\) (a thuôc Z)
\(\Leftrightarrow4n^2-4n+8=4a^2\)
\(\Leftrightarrow\left(4n^2-4n+1\right)-4a^2+7=0\)
\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)
\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2n-1\right)=-7\)
Đến đây phân tích ước của 7 ra ; tự lm đc
b) Ta có : \(n^5-n=n\left(n^4-1\right)=n\left(n^2+1\right)\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Ta thấy tổng trên chia hết cho 2 và 5 nên \(n^5-n\) chia hết cho 10
=> \(n^5-n+2\) có chữ số tận cùng là 2 ko phải số CP
Ta có: \(n^5-n\)
\(=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n^2-1\right)\left[\left(n^2-4\right)+5\right]\)
\(=\)\(n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)
Lại có : \(n\in N\)
=> \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số tự nhiên liên tiếp
=> \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮10\)
Mà \(5\left(n-1\right)n\left(n+1\right)⋮10\)
=> \(n^5-n⋮10\)
=> \(n^5-n\)có chữ số tận cùng là 0
=> A có chữ số tận cùng là 2
=> A ko phải là số chính phương
Vậy ko tìm được giá trị nào của n thỏa mãn đề bài
`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........
Đặt \(n^2+n+6=a^2\)
\(\Leftrightarrow4n^2+4n+24=4a^2\)
\(\Leftrightarrow4n^2+4n+1+23=4a^2\)
\(\Leftrightarrow\left(2n+1\right)^2+23=4a^2\)
\(\Leftrightarrow4a^2-\left(2n+1\right)^2=23\)
\(\Leftrightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=23\)
\(\forall n\in N\)thì \(2a+2n+1>2a-2n-1>0\)
\(\Rightarrow\left\{{}\begin{matrix}2a+2n+1=23\\2a-2n-1=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=6\\n=5\end{matrix}\right.\)
Vậy n = 5
.ta có
n^5 - n + 2 = (n - 1)*n*(n + 1)*(n^2 + 1) + 2
do (n - 1)*n*(n + 1) là tích của 3 sô liên tiếp nên chia hết cho 3
=> n^5 - n + 2 = 3k + 2
=> n^5 - n + 2 chia 3 dư 2
+ xét các sô chính phương có dạng (3n)^2
(3n + 1)^2 = 9n^2 + 6n + 1 và (3n + 2)^2 = 9n^2 + 6n + 4
=> các sô chính phương chia 3 dư 0 hoạc 1
Vậy không tồn tại số chính phương có dạng n^5 - n + 2
Ta có
n^5 - n + 2 = (n - 1) x n x (n + 1) x (n^2 + 1) + 2
Do (n - 1)*n*(n + 1) là tích của 3 sô liên tiếp nên chia hết cho 3
=> n^5 - n + 2 = 3k + 2
=> n^5 - n + 2 chia 3 dư 2
+ Xét các sô chính phương có dạng (3n)^2
(3n + 1)^2 = 9n^2 + 6n + 1 và (3n + 2)^2 = 9n^2 + 6n + 4
=> Các sô chính phương chia 3 dư 0 hoặc1
Vậy không tồn tại số chính phương có dạng n^5 - n + 2