\(n\in N\), \(n\ge2\) để P =n^5-n+2 là số chính phương<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

Ta có: \(n^5-n\)

\(=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n^2-1\right)\left[\left(n^2-4\right)+5\right]\)

\(=\)\(n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)

Lại có : \(n\in N\)

=> \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số tự nhiên liên tiếp 

=> \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮10\)

Mà \(5\left(n-1\right)n\left(n+1\right)⋮10\)

=> \(n^5-n⋮10\)

=> \(n^5-n\)có chữ số tận cùng là 0

=> A có chữ số tận cùng là 2 

=> A ko phải là số chính phương

Vậy ko tìm được giá trị nào của n thỏa mãn đề bài

11 tháng 2 2018

A không phải số chính phương ( trên mạng có đáp án đó)

7 tháng 6 2018

Đặt \(n^2+n+6=a^2\)

\(\Leftrightarrow4n^2+4n+24=4a^2\)

\(\Leftrightarrow4n^2+4n+1+23=4a^2\)

\(\Leftrightarrow\left(2n+1\right)^2+23=4a^2\)

\(\Leftrightarrow4a^2-\left(2n+1\right)^2=23\)

\(\Leftrightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=23\)

\(\forall n\in N\)thì \(2a+2n+1>2a-2n-1>0\)

\(\Rightarrow\left\{{}\begin{matrix}2a+2n+1=23\\2a-2n-1=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=6\\n=5\end{matrix}\right.\)

Vậy n = 5

29 tháng 11 2016

n = 5 nha bạn

\(5^2+5+6=36\\ 36=6^2\)

30 tháng 11 2016

Ta có

n2 < n2 + n + 6 < n2 + 3n + 9

<=> n2 < n2 + n + 6 < (n + 3)2

<=> (n2 + n + 6) = [(n + 1)2; (n + 2)2]

Thế vô tìm được n = 5

1 tháng 11 2019

Giả sử: \(9^n+63=x^2\)

+) Xét n=2k+1 (lẻ):

\(9^{2k+1}+63=9^{2k}.9+63\equiv\left(-1\right)^{2k}.9+3\equiv2\)(mod 5) -> vô lí vì scp không đòng dư với 2 mod 5 -> n=2k

+) Xét n=2k:

\(9^{2k}+63=x^2\Leftrightarrow x^2-9^{2k}=63\Leftrightarrow\left(x-9^k\right)\left(x+9^k\right)=63\)
Đến đây bạn lập bảng là ra nhé!

6 tháng 1 2018

Vì 3 là số lẻ \(\Rightarrow3^n\)là số lẻ Hay \(A=3^n+4\) là số chính phương lẻ => A chia cho 8 dư 1

+) Xét n là số chẵn => \(n=2k\) (k\(\in N\)) Thay vào A :

\(A=3^{2k}+4=9^k+4\equiv5\left(mod8\right)\) => A chia 8 dư 5 (KTM)

+) Xét n là số lẻ => \(n=2k+1\) (k\(\in N\)) Thay vào A :

\(A=3^{2k+1}+4=9^k.3+4\equiv7\left(mod8\right)\)=> A chia 8 dư 7 (KTM)

Vậy ko có số tự nhiên n nào để A là số chính phương

6 tháng 1 2018

vì A là số chính phương =>A=\(a^2\) ( a là số tự nhiên )

=>\(3^n+4=a^2\Leftrightarrow3^n=\left(a-2\right)\left(a+2\right)\)

=>\(\hept{\begin{cases}a-2=3^x\\a+2=3^y\end{cases}\left(y>x\right)}\)

=>\(3^y-3^x=4\Rightarrow3^x\left(3^{y-x}-1\right)=4\)

đây là ước của 4 thì dễ rồi nhé !

^_^

Ta có:\(2n^4+3n^2+1=\left(n^2\right)^2+2n^21^2+1^2+\left(n^4+n^2\right)=\left(n^2+1\right)^2+n^2\left(n^2+1\right)\)

\(=\left(n^2+1\right)\left(2n^2+1\right)\)

Vì \(\left(n^2+1\right)\left(2n^2+1\right)\)mà \(2n^2+1\ge n^2+1\)

\(\Rightarrow2n^2+1⋮n^2+1\)

\(\Rightarrow2n^2+2-1=2\left(n^2+1\right)-1⋮n^2+!\)

\(\Rightarrow-1⋮n^2+1\)

Mà \(n^2+1>0\)

\(\Rightarrow n^2+1=1\Rightarrow n=0\)