\(\in\)N  để A= \(2^8+2^{11}+2^n\)là số chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2018

Đặt \(n^2+n+6=a^2\)

\(\Leftrightarrow4n^2+4n+24=4a^2\)

\(\Leftrightarrow4n^2+4n+1+23=4a^2\)

\(\Leftrightarrow\left(2n+1\right)^2+23=4a^2\)

\(\Leftrightarrow4a^2-\left(2n+1\right)^2=23\)

\(\Leftrightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=23\)

\(\forall n\in N\)thì \(2a+2n+1>2a-2n-1>0\)

\(\Rightarrow\left\{{}\begin{matrix}2a+2n+1=23\\2a-2n-1=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=6\\n=5\end{matrix}\right.\)

Vậy n = 5

11 tháng 2 2018

Ta có: \(n^5-n\)

\(=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n^2-1\right)\left[\left(n^2-4\right)+5\right]\)

\(=\)\(n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)

Lại có : \(n\in N\)

=> \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số tự nhiên liên tiếp 

=> \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮10\)

Mà \(5\left(n-1\right)n\left(n+1\right)⋮10\)

=> \(n^5-n⋮10\)

=> \(n^5-n\)có chữ số tận cùng là 0

=> A có chữ số tận cùng là 2 

=> A ko phải là số chính phương

Vậy ko tìm được giá trị nào của n thỏa mãn đề bài

11 tháng 2 2018

A không phải số chính phương ( trên mạng có đáp án đó)

29 tháng 11 2016

n = 5 nha bạn

\(5^2+5+6=36\\ 36=6^2\)

30 tháng 11 2016

Ta có

n2 < n2 + n + 6 < n2 + 3n + 9

<=> n2 < n2 + n + 6 < (n + 3)2

<=> (n2 + n + 6) = [(n + 1)2; (n + 2)2]

Thế vô tìm được n = 5

11 tháng 6 2018

Ta có:
\(A=n^2\left(n^2+n+1\right)\)
Để A là số chính phương thì \(n^2=n^2+n+1\)(1) hoặc \(n=n\left(n^2+n+1\right)\)(2) hoặc \(1=n^4+n^3+n^2\)(3)
\(\left(1\right)\Leftrightarrow n=-1\left(tm\right)\)
\(\left(2\right)\Leftrightarrow\orbr{\begin{cases}n=0\\n=-1\end{cases}}\)
\(\left(3\right)\Leftrightarrow n=-1\)
Vậy n=0 hoặc n=-1
 

Ta có:\(2n^4+3n^2+1=\left(n^2\right)^2+2n^21^2+1^2+\left(n^4+n^2\right)=\left(n^2+1\right)^2+n^2\left(n^2+1\right)\)

\(=\left(n^2+1\right)\left(2n^2+1\right)\)

Vì \(\left(n^2+1\right)\left(2n^2+1\right)\)mà \(2n^2+1\ge n^2+1\)

\(\Rightarrow2n^2+1⋮n^2+1\)

\(\Rightarrow2n^2+2-1=2\left(n^2+1\right)-1⋮n^2+!\)

\(\Rightarrow-1⋮n^2+1\)

Mà \(n^2+1>0\)

\(\Rightarrow n^2+1=1\Rightarrow n=0\)

a, \(x^3+2\sqrt{2}x^2+2x=0\)

\(x\left(x^2+2\sqrt{2}x+2\right)+0\)

\(x\left(x+\sqrt{2}\right)^2=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+\sqrt{2}=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-\sqrt{2}\end{cases}}\)

Vậy x = 0 ; x = \(-\sqrt{2}\)

b,vì  \(n^2+n+1\)là số chính phương nên đặt \(n^2+n+1=a^2\)với \(a\in N\)

\(n^2+n+1=a^2\)

\(\Leftrightarrow4n^2+4n+4=4a^2\)

\(\Leftrightarrow4n^2+4n+1+3=4a^2\)

\(\Leftrightarrow\left(2n+1\right)^2+3=4a^2\)

\(\Leftrightarrow4a^2-\left(2n+1\right)^2=3\)

\(\Leftrightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=3\)

Ta thấy \(\hept{\begin{cases}2a-2n-1=1\\2a+2n+1=3\end{cases}}\) Vì \(\left(2a+2n+1>2a-2n-1>0\right)\)

\(\Leftrightarrow\hept{\begin{cases}2\left(a-n\right)=2\\2\left(a+n\right)=2\end{cases}\Leftrightarrow}\hept{\begin{cases}a-n=1\\a+n=1\end{cases}}\)

\(a-n=1\Rightarrow a=1+n\)

\(\Rightarrow1+n+n=1\)

\(\Leftrightarrow2n=1-1\)

\(\Leftrightarrow2n=0\)

\(\Leftrightarrow n=0\)