Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
1) \(A=-2x^2-10y^2+4xy+4x+4y+2013=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x,y\inℝ\)Đẳng thức xảy ra khi x = 3/2; y = 1/2
2) \(A=a^4-2a^3+2a^2-2a+2=\left(a^2+1\right)\left(a-1\right)^2+1\ge1\)
Đẳng thức xảy ra khi a = 1
3) \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4=\left(x^2-5xy+4y^2\right)\left(x^2-5x+6y^2\right)+y^4=\left(x^2-5xy+4y^2\right)^2+2y^2\left(x^2-5xy+4y^2\right)+y^4=\left(x^2-5xy+5y^2\right)^2\)(là số chính phương, đpcm)
4) \(a^3+b^3=3ab-1\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\Leftrightarrow\left[\left(a+b\right)^3+1\right]-3ab\left(a+b+1\right)=0\)\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2-ab-a-b+1\right)=0\)Vì a, b dương nên a + b + 1 > 0 suy ra \(a^2+b^2-ab-a-b+1=0\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\Leftrightarrow a=b=1\)
Do đó \(a^{2018}+b^{2019}=1+1=2\)
5) \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9\)(Do số chính phương chia 3 dư 1 hoặc 0)
Dạng 1:
a) \(x^4+y^2-2x^2y=\left(x^2-y\right)^2\)
b) \(\left(2a+b\right)^2-\left(2b+a\right)^2\)
\(=\left(2a+b-2b-a\right)\left(2a+b+2b+a\right)\)
\(=\left(a-b\right)\left(3a+3b\right)\)
\(=3\left(a-b\right)\left(a+b\right)\)
c) \(\left(x^2+1\right)^2-4x^2\)
\(=\left(x^2-2x+1\right)\left(x^2+2x+1\right)\)
\(=\left(x-1\right)^2\cdot\left(x+1\right)^2\)
d) \(a^3+b^3+c^3-3abc\)
\(=a^3+3a^2b+3ab^2+b^3+c^3-3abc-3a^2b-3ab^2\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ca-bc-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Dạng 2:
a) \(\left(7n-2\right)^2-\left(2n-7\right)^2\)
\(=\left(7n-2-2n+7\right)\left(7n-2+2n-7\right)\)
\(=\left(5n+5\right)\left(9n-9\right)\)
\(=45\cdot\left(n+1\right)\cdot\left(n-1\right)⋮3;5;9\) chứ không chia hết cho 7
Bạn xem lại đề.
b) \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên tích đó chia hết cho 2 và 3.
Mặt khác \(\left(2;3\right)=1\)
Do đó \(n\left(n-1\right)\left(n+1\right)⋮2.3=6\) ( đpcm
Ta có: x2 – x – 12 = x2 – x – 16 + 4
= (x2 – 16) – (x – 4)
= (x – 4).(x + 4) – (x – 4)
= (x – 4).(x + 4 – 1)
= (x – 4).(x + 3)
Ta có:
\(A=n^2\left(n^2+n+1\right)\)
Để A là số chính phương thì \(n^2=n^2+n+1\)(1) hoặc \(n=n\left(n^2+n+1\right)\)(2) hoặc \(1=n^4+n^3+n^2\)(3)
\(\left(1\right)\Leftrightarrow n=-1\left(tm\right)\)
\(\left(2\right)\Leftrightarrow\orbr{\begin{cases}n=0\\n=-1\end{cases}}\)
\(\left(3\right)\Leftrightarrow n=-1\)
Vậy n=0 hoặc n=-1
a, \(x^3+2\sqrt{2}x^2+2x=0\)
\(x\left(x^2+2\sqrt{2}x+2\right)+0\)
\(x\left(x+\sqrt{2}\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+\sqrt{2}=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-\sqrt{2}\end{cases}}\)
Vậy x = 0 ; x = \(-\sqrt{2}\)
b,vì \(n^2+n+1\)là số chính phương nên đặt \(n^2+n+1=a^2\)với \(a\in N\)
\(n^2+n+1=a^2\)
\(\Leftrightarrow4n^2+4n+4=4a^2\)
\(\Leftrightarrow4n^2+4n+1+3=4a^2\)
\(\Leftrightarrow\left(2n+1\right)^2+3=4a^2\)
\(\Leftrightarrow4a^2-\left(2n+1\right)^2=3\)
\(\Leftrightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=3\)
Ta thấy \(\hept{\begin{cases}2a-2n-1=1\\2a+2n+1=3\end{cases}}\) Vì \(\left(2a+2n+1>2a-2n-1>0\right)\)
\(\Leftrightarrow\hept{\begin{cases}2\left(a-n\right)=2\\2\left(a+n\right)=2\end{cases}\Leftrightarrow}\hept{\begin{cases}a-n=1\\a+n=1\end{cases}}\)
\(a-n=1\Rightarrow a=1+n\)
\(\Rightarrow1+n+n=1\)
\(\Leftrightarrow2n=1-1\)
\(\Leftrightarrow2n=0\)
\(\Leftrightarrow n=0\)