Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{3333333}+\sqrt{33333333}+\sqrt{x}=2007\)
\(\Rightarrow\sqrt{33333333}+\sqrt{x}=181,2582329365414\)
\(\Rightarrow\sqrt{x}=-5592,24443009\)
\(\Rightarrow x=\sqrt{-5592,24443009}\)
\(\sqrt{3333333}+\sqrt{33333333}+\sqrt{x}=2007\)
\(\Rightarrow\sqrt{33333333}+\sqrt{x}=181,2582329365414\)
\(\Rightarrow\sqrt{x}=-5592,24443009\)
\(\Rightarrow x=\sqrt{-5592,24443009}\)
a) 1
b) 1 hoặc 0
c) 0
d) 2
Căn bản cx đã muộn nên mk làm ngắn gọn, nếu bn cần lời giải chi tiết hãy add mk để có lời giải chi tiết nhé!
\(\sqrt{3000}.\sqrt{9000}+\sqrt{x}=30000\)
\(5196,15242271+\sqrt{x}=30000\)
\(\sqrt{x}=30000-5196,15242271\)
\(\sqrt{x}=24803,8475773\)
\(x=155,18971479225033\)
\(Vậy\)\(x=155,18971479225033\)
\(a)\) ĐKXĐ : \(x\ge0\)
\(x=\sqrt{x}\)
\(\Leftrightarrow\)\(x-\sqrt{x}=0\)
\(\Leftrightarrow\)\(\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy \(x=0\) hoặc \(x=1\)
\(b)\) ĐKXĐ : \(x\ge1\)
\(\sqrt{x-1}+2=3\)
\(\Leftrightarrow\)\(\sqrt{x-1}=1\)
\(\Leftrightarrow\)\(x-1=1\)
\(\Leftrightarrow\)\(x=2\)
Vậy \(x=2\)
\(c)\) ĐKXĐ : \(x\ge1\)
\(\sqrt{x-1}=x-1\)
\(\Leftrightarrow\)\(\sqrt{x-1}-\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\sqrt{x-1}\left(1-\sqrt{x-1}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\1-\sqrt{x-1}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy \(x=1\) hoặc \(x=2\)
Chúc bạn học tốt ~
\(\sqrt{300000}+\sqrt{123456789}+\sqrt{x}=1234567897\)
\(\Leftrightarrow\sqrt{123456789}+\sqrt{x}=123456241,277\)
\(\Leftrightarrow\sqrt{x}=123467352,389\)
\(\Leftrightarrow x=17,5244187271828182846\)
\(\sqrt{300000}+\sqrt{123456789}+\sqrt{x}=1234567897\)
\(\Leftrightarrow\sqrt{123456789}+\sqrt{x}=123456241,277\)
\(\Leftrightarrow\sqrt{x}=123467352,389\)
\(\Leftrightarrow x=123467352,389^2\)
a) \(x-2\sqrt{x}=0\)
\(\Rightarrow x=2\sqrt{x}\)\(\Rightarrow x^2=4x\)\(\Rightarrow x\left(x-4\right)=0\)
\(\Rightarrow x=0\)hoặc \(x=4\)
Vậy \(x=0\)hoặc \(x=4\)
b) \(x=\sqrt{x}\)\(\Rightarrow x^2=x\)\(\Rightarrow x\left(x-1\right)=0\)
\(\Rightarrow\)\(x=0\)hoặc \(x=1\)
Vậy \(x=0\)hoặc \(x=1\)
\(b,\text{ }x=\sqrt{x}\)
\(x^2=x\)
\(x^2-x=0\)
\(x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=0\\x=0+1\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{0\text{ ; }1\right\}\)
1) \(x-2\sqrt{x}=0\Rightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
2) \(x=\sqrt{x}\Rightarrow x-\sqrt{x}=0\Rightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
3) \(2x+5\sqrt{x}=0\Rightarrow\sqrt{x}\left(2\sqrt{x}+5\right)=0\Rightarrow\sqrt{x}=0\)(Vì \(\sqrt{x}\ge0\Rightarrow2\sqrt{x}+5>0\))\(\Rightarrow x=0\)
\(\sqrt{\left(x+1\right)^2}-2\sqrt{x+1}=0\)\(\Leftrightarrow\left|x+1\right|-2\sqrt{x+1}=0\)
\(\Leftrightarrow\left|x+1\right|=2\sqrt{x+1}\)\(\Leftrightarrow\left|x+1\right|^2=\left(2\sqrt{x+1}\right)^2\)
\(\Leftrightarrow x^2+2x+1=4x+4\)\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow\left(x-1\right)^2-4=0\)\(\Leftrightarrow\left(x-1\right)^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=-2\\x-1=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vậy ..............
\(a,ĐK:x\ge-2\)
\(\sqrt{x+2}=3\)
\(\Leftrightarrow x+2=9\Rightarrow x=7\left(Tm\right)\)
\(b,\sqrt{x^2+3}=\sqrt{7}\)
\(\Leftrightarrow x^2+3=7\)
\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
\(c,\sqrt{x}=0\Rightarrow x=0\)
\(d,\sqrt{x}=-3\)
Vì \(\sqrt{x}\ge0;-3< 0\)=> pt vô nghiệm
\(e,3\sqrt{x}=1\)
\(\Rightarrow\sqrt{x}=\frac{1}{3}\Rightarrow x=\frac{1}{9}\)
\(g,4-5\sqrt{x}=-1\)
\(\Rightarrow5\sqrt{x}=5\)
\(\Rightarrow\sqrt{x}=1\Rightarrow x=1\)
a,\(\sqrt{x+2}=3\Leftrightarrow x+2=3^2\Leftrightarrow x=9-2=7\)
b,\(\sqrt{x^2+3}=\sqrt{7}\Leftrightarrow x^2+3=7\Leftrightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
c,\(\sqrt{x}=0\Leftrightarrow x=0\)
d,\(\sqrt{x}=-3\Leftrightarrow x=\left(-3\right)^2\Leftrightarrow x=9\)
e,g tương tự các câu trên bạn tự làm ik mk mỏi tay lắm r
a) \(-2\sqrt{x^2+1}=-8\)
=> \(\sqrt{x^2+1}=-8:\left(-2\right)\)
=> \(\sqrt{x^2+1}=4\)
=> \(x^2+1=16\)
=> \(x^2=16-1=15\)
=> \(\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
b) \(4+3\sqrt{x^2+2}=4\)
=> \(3\sqrt{x^2+2}=4-4=0\)
=> \(\sqrt{x^2+2}=0\)
=> \(x^2+2=0\)
=> \(x^2=-2\)
=> ko có giá trị x t/m
c)\(\sqrt{x+1}=3\)
=> \(x+1=9\)
=> x = 9 - 1 = 8
d) TT trên
cách giải cho bạn nếu bạn cần
TH1: \(x\ne0\)
bình phương 2 vế ta có:
\(x=x^2\)
\(x:x=x\)
\(\Rightarrow1=x\)
TH2:\(x=0\)
x = 0
Hok tốt ...