K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2020

\(\sqrt{3000}.\sqrt{9000}+\sqrt{x}=30000\)

\(5196,15242271+\sqrt{x}=30000\)

\(\sqrt{x}=30000-5196,15242271\)

\(\sqrt{x}=24803,8475773\)

\(x=155,18971479225033\)

\(Vậy\)\(x=155,18971479225033\)

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

\(\begin{array}{l}a)\sqrt x  - 16 = 0\\\sqrt x  = 16\\x = {16^2}\\x = 256\end{array}\)

Vậy x = 256

\(\begin{array}{l}b)2\sqrt x  = 1,5\\\sqrt x  = 1,5:2\\\sqrt x  = 0.75\\x = {(0,75)^2}\\x = 0,5625\end{array}\)

Vậy x = 0,5625

\(\begin{array}{l}c)\sqrt {x + 4}  - 0,6 = 2,4\\\sqrt {x + 4}  = 2,4 + 0,6\\\sqrt {x + 4}  = 3\\x + 4 = 9\\x = 5\end{array}\)

Vậy x = 5

26 tháng 2 2017

Vì \(\sqrt{\left(x-\sqrt{2}\right)^2}=\left|x-\sqrt{2}\right|\ge0;\sqrt{\left(y+\sqrt{2}\right)^2}=\left|y+\sqrt{2}\right|\ge0\);|x+y+z|\(\ge\)0

=>\(\left|x-\sqrt{2}\right|+\left|y+\sqrt{2}\right|+\left|x+y+z\right|\ge0\)

Dấu "=" xảy ra khi \(\left|x-\sqrt{2}\right|=\left|y+\sqrt{2}\right|=\left|x+y+z\right|=0\)

\(\left|x-\sqrt{2}\right|=0\Leftrightarrow x-\sqrt{2}=0\Leftrightarrow x=\sqrt{2}\)

\(\left|y+\sqrt{2}\right|=0\Leftrightarrow y+\sqrt{2}=0\Leftrightarrow y=-\sqrt{2}\)

\(\left|x+y+z\right|=0\Leftrightarrow x+y+z=0\Leftrightarrow\sqrt{2}+\left(-\sqrt{2}\right)+z=0\Leftrightarrow z=0\)

Vậy ............

13 tháng 2 2016

x=căn bậc 2 of 2

y= - căn bậc 2 of 2

13 tháng 2 2016

x= căn 2;y=-căn 2; z=0

28 tháng 3 2023

Khi bình phương hai vế ta có => x+ vế trái = 4

vế trái = 2. vậy x +2 =4 => x=2

29 tháng 3 2023

Vì biểu thức trên tự chứa chính mình (\(\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{...}}}}=2\))

Suy ra \(\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{...}}}}=\sqrt{x+\sqrt{2}}=2\)

               \(x+\sqrt{2}=2^2=4\)

               \(x=4-\sqrt{2}\)

Vậy \(x=4-\sqrt{2}\)

8 tháng 10 2016

Ta có:

\(x.\sqrt{2}=y.\sqrt{3}\)\(\Rightarrow\frac{x}{\sqrt{3}}=\frac{y}{\sqrt{2}}=\frac{2x}{2.\sqrt{3}}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x}{\sqrt{3}}=\frac{y}{\sqrt{2}}=\frac{2x}{2.\sqrt{3}}=\frac{2x-y}{2.\sqrt{3}-\sqrt{2}}=\frac{2.\sqrt{3}-\sqrt{2}}{2.\sqrt{3}-\sqrt{2}}=1\)

\(\Rightarrow\begin{cases}x=1.\sqrt{3}=\sqrt{3}\\y=1.\sqrt{2}=\sqrt{2}\end{cases}\)

Vậy \(x=\sqrt{3};y=\sqrt{2}\)