Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để biểu thức A có giá trị nguyên thì 3n + 1\(⋮\)n + 1
Ta có :
3n + 1 \(⋮\)n + 1
\(\Leftrightarrow\)3(n + 1) - 3 + 1 \(⋮\)n + 1
\(\Leftrightarrow\)- 2 \(⋮\)n + 1
\(\Leftrightarrow\)n + 1 \(\in\)Ư(- 2) = {\(\pm\)1 ; \(\pm\)2}
\(\Leftrightarrow\)n \(\in\){ 0 ; - 2 ; 1 ; - 3}
Ta có:A=\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=3+\frac{5}{n-1}\)
Để A nguyên thì \(\frac{5}{n-1}\in Z\Rightarrow n-1\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
\(\Rightarrow n\in\left\{-4,0,2,6\right\}\)
Vậy............
Ta có : A= (3n+2)/(n-1)
= [3.( n-1)+5]/(n-1)
=3+[5/(n-1)]
Để A nguyên thì 5 phải chia hết cho n-1
=> n-1 thuộc ước của 5
Ta có bảng sau
x-1 | 1 | -1 | 5 | -5 |
---|---|---|---|---|
x | 2 | 0 | 6 | -4 |
Vậy x\(\in\){ -4 ; 0 ; 2 ; 6 }
\(B=\frac{3n+1}{n+1}=\frac{3n+3}{n+1}-\frac{2}{n+1}=3-\frac{2}{n+1}\)
B nguyên khi \(\frac{2}{n+1}\) nguyên <=> 2 chia hết cho n+1 <=>n+1 thuộc Ư(2)={-2;-1;1;2}
<=>n thuộc {-3;-2;0;1}
\(B=\frac{3n+1}{n+1}=\frac{3\left(n+1\right)-2}{n+1}=3-\frac{2}{n+1}\)
B nguyên <=> \(\frac{2}{n+1}\)nguyên
<=> \(2⋮n+1\)<=> \(n+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
n+1 | -2 | -1 | 1 | 2 |
n | -3 | -2 | 0 | 1 |
\(\dfrac{3n+1}{3n-4}\left(n\in Z\right)\\ =\dfrac{3n-4+5}{3n-4}=1+\dfrac{5}{3n-4}\)
Để biểu thức đạt gt nguyên thì : \(\dfrac{5}{3n-4}\in Z\)
\(=>3n-4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\\ =>3n\in\left\{5;3;9;-1\right\}\\ =>n\in\left\{\dfrac{5}{3};1;3;-\dfrac{1}{3}\right\}\)
Do n nguyên -> Kết luận : \(n\in\left\{1;3\right\}\)
\(\dfrac{3n+1}{3n-4}\) \(=\dfrac{3n-4+5}{3n-4}\) \(=1+\dfrac{5}{3n-4}\)
Để biểu thức nhận giá trị nguyên thì \(5⋮\left(3n-4\right)\)
\(\Rightarrow\left(3n-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(3n-4\) | \(-5\) | \(-1\) | \(1\) | \(5\) |
\(n\) | \(-\dfrac{1}{3}\) | \(1\) | \(\dfrac{5}{3}\) | \(3\) |
Vậy \(x=1\) hoặc \(x=3\) thì biểu thức \(\dfrac{3n+1}{3n-4}\) nhận giá trị nguyên
\(A=\dfrac{3\left(n-1\right)+5}{n-1}=3+\dfrac{5}{n-1}\in Z\\ \Leftrightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)
Bg
a) Ta có: A = \(\frac{4n+1}{3n+1}\) (n thuộc Z)
Để A thuộc Z thì 4n + 1 \(⋮\)3n + 1
=> 4.(3n + 1) - 3.(4n + 1) \(⋮\)3n + 1
=> 12n + 4 - (12n + 3) \(⋮\)3n + 1
=> 12n + 4 - 12n - 3 \(⋮\)3n + 1
=> (12n - 12n) + (4 - 3) \(⋮\)3n + 1
=> 1 \(⋮\)3n + 1
=> 3n + 1 thuộc Ư(1)
Ư(1) = {1; -1}
=> 3n + 1 = 1 hay -1
=> 3n = 1 - 1 hay -1 - 1
=> 3n = 0 hay -2
=> n = 0 ÷ 3 hay -2 ÷ 3
=> n = 0 hay -2/3
Mà n thuộc Z
=> n = 0
Vậy n = 0 thì A nguyên
Để A nhận giá trị nguyên thì 3n+10 phải chia hết cho n+2
Ta có: 3n+10=3.(n+2)+4
\(\Rightarrow\)4 chia hết cho 3n+10
Tức là \(3n+10\in U\left(4\right)\)
Mả \(U\left(4\right)\in\left(1;2;4\right)\)
ta có bảng giá trị sau:
3n+10 | 1 | 2 | 4 |
3n | -9 | -8 | -6 |
n | -3 | -8/3 | -2 |
Lại do: n thuộc Z.
Vay n= -3 ; -2.
Muốn A có giá trị nguyên thì 3n + 9 phải chia hết cho n - 4
=> 3n - 12 + 21 chia hết cho n - 4
3n - 12 chia hết cho n - 4 với mọi n . Vậy 21 chia hết cho n - 4
=> n - 4 là Ư(21)
=> n-4 là Ư( 1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21 }
Xét n - 4 = 1
n = 1 + 4 = 5
Xét n - 4 = -1
n = -1 + 4 = 3
Xét n - 4 = 3
n = 3 + 4 = 7
Xét n - 4 = -3
n = -3 + 4 = 1
Xét n - 4 = 7
n = 7 + 4 = 11
Xét n - 4 = -7
n = -7 + 4 = -3
Xét n - 4 = 21
n = 21 + 4
n = 25
Xét n - 4 = -21
n = -21 + 4 = -17
Vậy n { 5 ; 3 ; 7 ; 1 ; 11 ; -3 ; 25 ; -17 }
Với n = 5 , ta có giá trị A = 24
Với n = 3 , ta có giá trị A = -18
Với n = 7 , ta có giá trị A = 10
Với n = 1 , ta có giá trị A = -4
Với n = 11 , ta có giá trị A = 6
Với n = -3 ; ta có giá trị A = 0
....
Để A là số nguyên thì 3n+5 chia hết cho n+4
=>3n+12-7 chia hết cho n+4
=>n+4 thuộc {1;-1;7;-7}
=>n thuộc {-3;-5;3;-11}
ta có 3n+1 phải chia hết cho n-1
3n+1=3n+3-2=3(n+1)-2
Mà 3(n+1) chia hết cho n+1
Nên để 3(n+1)-2 chia hết cho n+1 thì 2 chia hết cho n+1
nên n+1 thuộc ước của 2
nên bạn tự làm nốt nhé