Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2nn + 6n
= 6n \(⋮6\forall n\inℤ\)( đpcm )
Bài 2.
P = ( m2 - 2m + 4 )( m + 2 ) - m3 + ( m + 3 )( m - 3 ) - m2 - 18
P = m3 + 8 - m3 + m2 - 9 - m2 - 18
P = 8 - 9 - 18 = -19
=> P không phụ thuộc vào biến M ( đpcm )
1.
Đặt $9n+16=a^2$ và $16n+9=b^2$ với $a,b$ là số tự nhiên.
\(\Leftrightarrow \left\{\begin{matrix} 144n+16^2=16a^2\\ 144n+9^2=9b^2\end{matrix}\right.\)
\(\Rightarrow 16a^2-9b^2=16^2-9^2\)
\(\Leftrightarrow (4a-3b)(4a+3b)=175=5^2.7\)
Vì $4a+3b>0; 4a+3b> 4a-3b$ với mọi $a,b\in\mathbb{N}$ nên ta xét các TH sau:
TH1: $4a-3b=1; 4a+3b=175$
$\Rightarrow a=22$
$\Rightarrow n=52$ (tm)
TH2: $4a-3b=5; 4a+3b=35$
$\Rightarrow a=5$
$\Rightarrow n=1$ (tm)
TH3: $4a-3b=7; 4a+3b=25$
$\Rightarrow a=4$
$\Rightarrow n=0$ (tm)
Vậy $n\in\left\{0;1;52\right\}$
2.
Đặt $n^2+3^n=a^2$ với $a$ tự nhiên.
$3^n=a^2-n^2=(a-n)(a+n)$. Do đó tồn tại $u,v\in\mathbb{N}; v> u; v+u=n$ sao cho:
$3^u=a-n; 3^v=a+n$
$\Rightarrow n=\frac{3^v-3^u}{2}$
\(\Leftrightarrow n=\frac{3^u(3^{v-u}-1)}{2}=3^u(3^{v-u-1}+3^{v-u-2}+...+1)=3^{v-1}+3^{v-2}+...+3^u\)
\(\Leftrightarrow u+v=3^{v-1}+3^{v-2}+...+3^u(*)\)
Nếu $v=1$ thì $u<1$ nên $u=0$. Khi đó, $n=1$, hoàn toàn thỏa mãn
Nếu $v=2$ thì $u=0$ hoặc $u=1$. Thay vào $(*)$ thì $v=2; u=1$ kéo theo $n=3$
Nếu $v\geq 3$, bằng quy nạp ta dễ thấy $3^{v-1}> v$ và với $n\geq 0$ thì $3^u\geq u$
$\Rightarrow $u+v< 3^{v-1}+...+3^u$ (loại)
Vậy $n=1;3$
2n + n +7n +1 2n -1 n +n +4 2n -n 2n + 7n +1 2n -n 8n +1 8n -1 2 3 2 3 2 2 2 2 để 2n3+n2 +7n+1 chia hết cho 2n-1 thì 2 \(⋮2n-1\)
=>2n-1 \(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
ta có bảng sau
2n-1 | -1 | 1 | -2 | 2 |
n | 0 | 1 | \(\dfrac{-1}{2}\) | 1,5 |
tm | tm | loại | loại |
vậy n \(\in\left\{0;1\right\}\)
1,n ( 2n - 3 ) - 2n (n + 1)
= 2n^2 - 3n - 2n^2 - 2n
= -5n chia hết cho 5 với mọi n
=> ĐPCM
2,( n- 1)(n + 4) - ( n - 4 )( n + 1)
= n^2 - n + 4n - 4 - ( n^2 - 4n + n - 4 )
= n^2 + 3n - 4 - n^2 + 3n + 4
= 6n chia hết cho 6 với mọi n thuộc Z
=> ĐPCM
\(n^2=(a+1)^3-a^3\)
\(n^2+3(a+1)a=(a+1)^3-a^3+3(a+1)a\)
\(n^2+3(a+1)a=(a+1-a)^3\)
\(n^2+3(a+1)a=1^3=1\)
\(n^2\ge0(\forall n);a\inℤ;n\inℤ\)
\(\Rightarrow a+1=0;a=0;n^2=1\)
\(\Rightarrow a=-1;a=0;n=1;n=-1\)
m = -1;m = 0
n = -1;n = 0
~ Chúc bn học tốt ~
~TMT_Nhók~