K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 7 2021

1.

Đặt $9n+16=a^2$ và $16n+9=b^2$ với $a,b$ là số tự nhiên.

\(\Leftrightarrow \left\{\begin{matrix} 144n+16^2=16a^2\\ 144n+9^2=9b^2\end{matrix}\right.\)

\(\Rightarrow 16a^2-9b^2=16^2-9^2\)

\(\Leftrightarrow (4a-3b)(4a+3b)=175=5^2.7\)

Vì $4a+3b>0; 4a+3b> 4a-3b$ với mọi $a,b\in\mathbb{N}$ nên ta xét các TH sau:

TH1: $4a-3b=1; 4a+3b=175$

$\Rightarrow a=22$

$\Rightarrow n=52$ (tm)

TH2: $4a-3b=5; 4a+3b=35$

$\Rightarrow a=5$

$\Rightarrow n=1$ (tm)

TH3: $4a-3b=7; 4a+3b=25$

$\Rightarrow a=4$

$\Rightarrow n=0$ (tm)

Vậy $n\in\left\{0;1;52\right\}$

 

AH
Akai Haruma
Giáo viên
19 tháng 7 2021

2. 

Đặt $n^2+3^n=a^2$ với $a$ tự nhiên.

$3^n=a^2-n^2=(a-n)(a+n)$. Do đó tồn tại $u,v\in\mathbb{N}; v> u; v+u=n$ sao cho:

$3^u=a-n; 3^v=a+n$

$\Rightarrow n=\frac{3^v-3^u}{2}$

\(\Leftrightarrow n=\frac{3^u(3^{v-u}-1)}{2}=3^u(3^{v-u-1}+3^{v-u-2}+...+1)=3^{v-1}+3^{v-2}+...+3^u\)

\(\Leftrightarrow u+v=3^{v-1}+3^{v-2}+...+3^u(*)\)

Nếu $v=1$ thì $u<1$ nên $u=0$. Khi đó, $n=1$, hoàn toàn thỏa mãn

Nếu $v=2$ thì $u=0$ hoặc $u=1$. Thay vào $(*)$ thì $v=2; u=1$ kéo theo $n=3$

Nếu $v\geq 3$, bằng quy nạp ta dễ thấy $3^{v-1}> v$ và với $n\geq 0$ thì $3^u\geq u$

$\Rightarrow $u+v< 3^{v-1}+...+3^u$ (loại)

Vậy $n=1;3$

7 tháng 10 2017

a, Vì n \(\in\)N => n là số chính phương

mà 9 = 32 là số chính phương

=> n2 + 9 là số chính phương.

Vậy A = n2 + 9 là số chính phương.

CHÚC BẠN HỌC TỐT!!!!

22 tháng 1 2023

chứng minh kiểu j vậy?

sai bét

 

1 tháng 9 2017

240m2

60m

180m

còn lời giải tự làm nhé!!!!!!!!!!!!!!!!!!!!

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

2 tháng 10 2017

Đặt n^2 - 14n - 256 = x^2 với x là số tự nhiên 
--> n^2 - 2.n.7 + 49 - 49 - 256 = x^2 
-> (n - 7)^2 - 305 = x^2 --> (n - 7)^2 - x^2 = 305 
-> (n - 7 + x)(n - 7 - x) = 305 = 1.305 (1) 
= 61.5 (2)

có 2 trường hợp :

Nếu n - 7 + x = 305 và n - 7 - x = 1 --> n = 160 
Nếu n - 7 + x = 61 và n - 7 - x = 5 -> n = 40