\(=\frac{x^2+5x+8}{x^2+2x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2020

\(C=\frac{x^2+5x+8}{x^2+2x+1}=\frac{x^2+2x+1+3x+3+4}{x^2+2x+1}\)

\(=\frac{\left(x+1\right)^2+3\left(x+1\right)+4}{\left(x+1\right)^2}=1+\frac{3}{x+1}+\frac{4}{\left(x+1\right)^2}\)

Đặt \(\frac{1}{x+1}=a\)\(\Rightarrow C=1+3a+4a^2\)

\(\Rightarrow C=4\left(a^2+\frac{3}{4}a+\frac{1}{4}\right)=4\left(a^2+2.\frac{3}{8}+\frac{9}{64}-\frac{9}{64}+\frac{1}{4}\right)\)

\(=4\left(a+\frac{3}{8}\right)^2+\frac{7}{16}\)

\(\Rightarrow C_{min}=\frac{7}{16}\Leftrightarrow\)\(a=-\frac{3}{8}\Leftrightarrow\frac{1}{x+1}=-\frac{3}{8}\)

\(\Rightarrow3\left(x+1\right)=-8\Rightarrow x=-\frac{11}{3}\)

Vậy \(C_{min}=\frac{16}{7}\Leftrightarrow x=-\frac{11}{3}\)

28 tháng 3 2018

giải câu b trc nha

= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009

vậy min=2009 khi x=1

28 tháng 3 2018

https://olm.vn//hoi-dap/question/57101.html     

Tham khảo đây nhá bạn

10 tháng 1 2020

Phân thức đại số

11 tháng 1 2020

bạn có thể giải mấy câu kia luôn

7 tháng 8 2016
  • \(A=\frac{x^2+2x+3}{x+1}=\frac{\left(x^2+2x+1\right)+2}{x+1}=\frac{\left(x+1\right)^2+2}{x+1}=\left(x+1\right)+\frac{2}{x+1}\)

Áp dụng bđt Cauchy : \(x+1+\frac{2}{x+1}\ge2.\sqrt{\left(x+1\right).\frac{2}{x+1}}=2\sqrt{2}\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x>-1\\x+1=\frac{2}{x+1}\end{cases}\Leftrightarrow}x=\sqrt{2}-1\)

Vậy Min A = \(2\sqrt{2}\)tại \(x=\sqrt{2}-1\)

  • B không tìm được GTNN
26 tháng 8 2017

Hình chữ nhật ABCD và hình bình hành ABEF có đáy chung là AB và có chiều cao bằng nhau, vậy chúng có diện tích bằng nhau.

Suy ra cách vẽ một hình chữ nhật có cùng diện tích với một hình bình hành cho trước:

- Lấy nột cạnh của hình bình hành ABEF làm một cạnh của hình chữ nhật cần vẽ, chẳng hạn cạnh AB.

- Vẽ đường thẳng EF.

- Từ A và b vẽ các đường thẳng vuông góc với đường thẳng EF, chúng cắt đường thẳng EF lần lượt tại D, C. vẽ các đoạn thẳng AD,

BC. ABCD là hình chữ nhật có cùng diện tích với hình bình hành ABEF đã cho

0

19 tháng 10 2018

Tìm GTNN 

Câu 1 :

\(C=2x^2-5x+1\)

\(C=2\left(x^2-\frac{5}{2}x+\frac{1}{2}\right)\)

\(C=2\left(x^2-2\cdot x\cdot\frac{5}{4}+\frac{25}{16}-\frac{17}{16}\right)\)

\(C=2\left[\left(x-\frac{5}{4}\right)^2-\frac{17}{16}\right]\)

\(C=2\left(x-\frac{5}{4}\right)^2-\frac{17}{8}\ge\frac{-17}{8}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-\frac{5}{4}=0\Leftrightarrow x=\frac{5}{4}\)

Câu 2 : 

\(D=x^2+2x+y^2-8y-4\)

\(D=x^2+2\cdot x\cdot1+1^2+y^2-2\cdot y\cdot4+4^2-21\)

\(D=\left(x+1\right)^2+\left(y-2\right)^2-21\ge-21\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

Tìm GTLN :

Câu 1 :

\(C=-2x^2+2x-1\)

\(C=-2\left(x^2-x+\frac{1}{2}\right)\)

\(C=-2\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)\)

\(C=-2\left[\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\right]\)

\(C=-2\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\)

\(C=-\frac{1}{2}-2\left(x-\frac{1}{2}\right)^2\le-\frac{1}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

19 tháng 10 2018

Câu 2 :

\(D=-x^2-y^2-x+y-4\)

\(D=-\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)-\left(y^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)-\frac{7}{2}\)

\(D=-\left(x+\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2-\frac{7}{2}\)

\(D=\frac{-7}{2}-\left[\left(x+\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2\right]\le\frac{-7}{2}\forall x;y\)

Dấu "=' xảy ra \(\Leftrightarrow\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{2}\end{cases}}}\)