\(^{2X^2-5X+1}\)

D=\(^{x^2+2x+y^2-8y-4}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

Tìm GTNN 

Câu 1 :

\(C=2x^2-5x+1\)

\(C=2\left(x^2-\frac{5}{2}x+\frac{1}{2}\right)\)

\(C=2\left(x^2-2\cdot x\cdot\frac{5}{4}+\frac{25}{16}-\frac{17}{16}\right)\)

\(C=2\left[\left(x-\frac{5}{4}\right)^2-\frac{17}{16}\right]\)

\(C=2\left(x-\frac{5}{4}\right)^2-\frac{17}{8}\ge\frac{-17}{8}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-\frac{5}{4}=0\Leftrightarrow x=\frac{5}{4}\)

Câu 2 : 

\(D=x^2+2x+y^2-8y-4\)

\(D=x^2+2\cdot x\cdot1+1^2+y^2-2\cdot y\cdot4+4^2-21\)

\(D=\left(x+1\right)^2+\left(y-2\right)^2-21\ge-21\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

Tìm GTLN :

Câu 1 :

\(C=-2x^2+2x-1\)

\(C=-2\left(x^2-x+\frac{1}{2}\right)\)

\(C=-2\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)\)

\(C=-2\left[\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\right]\)

\(C=-2\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\)

\(C=-\frac{1}{2}-2\left(x-\frac{1}{2}\right)^2\le-\frac{1}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

19 tháng 10 2018

Câu 2 :

\(D=-x^2-y^2-x+y-4\)

\(D=-\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)-\left(y^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)-\frac{7}{2}\)

\(D=-\left(x+\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2-\frac{7}{2}\)

\(D=\frac{-7}{2}-\left[\left(x+\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2\right]\le\frac{-7}{2}\forall x;y\)

Dấu "=' xảy ra \(\Leftrightarrow\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{2}\end{cases}}}\)

22 tháng 7 2019

\(A=x^2+3x+7\)

\(=x^2+2.1,5x+2,25+4,75\)

\(=\left(x+1,5\right)^2+4,75\ge4,75\)

Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)

22 tháng 7 2019

\(B=2x^2-8x\)

\(=2\left(x^2-4x\right)\)

\(=2\left(x^2-4x+4-4\right)\)

\(=2\left[\left(x-2\right)^2-4\right]\)

\(=2\left(x-2\right)^2-8\ge-8\)

Vậy \(B_{min}=-8\Leftrightarrow x=2\)

28 tháng 9 2018

Đặt \(A=x^2+2y^2+2xy+2x+4y-1\)

\(A=\left(x^2+2xy+y^2\right)+\left(y^2+2y\right)+\left(2x+2y\right)-1\)

\(A=\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(y^2+2y+1\right)-3\)

\(A=\left(x+y+1\right)^2+\left(y+1\right)^2-3\ge-3\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)

Vậy GTNN của \(A\) là \(-3\) khi \(x=0\) và \(y=-1\)

Chúc bạn học tốt ~ 

28 tháng 9 2018

Đặt \(B=-x^2-2x-y^2-8y-10\)

\(-B=\left(x^2+2x+1\right)+\left(y^2+8y+16\right)-7\)

\(-B=\left(x+1\right)^2+\left(y+4\right)^2-17\ge-17\)

\(B=-\left(x+1\right)^2-\left(y+4\right)^2+17\le17\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x+1\right)^2=0\\-\left(y+4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-4\end{cases}}}\)

Vậy GTLN của \(B\) là \(17\) khi \(x=-1\) và \(y=-4\)

Chúc bạn học tốt ~ 

a) \(A=3x^2+x-1=3\left(x^2+\frac{x}{3}+\frac{1}{36}\right)-\frac{13}{12}=3\left(x+\frac{1}{6}\right)^2-\frac{13}{12}\ge-\frac{13}{12}\forall x\)

Dấu"=" xảy ra \(\Leftrightarrow x+\frac{1}{6}=0\)\(\Leftrightarrow x=-\frac{1}{6}\)

Vậy \(MinA=-\frac{13}{12}\Leftrightarrow x=-\frac{1}{6}\)

b)\(B=t^2-6t=\left(t^2-6t+9\right)-9=\left(t-3\right)^2-9\ge-9\forall t\)

Dấu "=" xảy ra \(\Leftrightarrow t-3=0\)\(\Leftrightarrow t=3\)

Vậy \(MinB=-9\Leftrightarrow t=3\)

c)\(C=x^2+\frac{3}{2}y^2-2x-4y+4\)

\(=\left(x^2-2x+1\right)+\frac{3}{2}\left(y^2-\frac{8}{3}y+\frac{16}{9}\right)+\frac{1}{3}\)

\(=\left(x-1\right)^2+\frac{3}{2}\left(y-\frac{4}{3}\right)^2+\frac{1}{3}\ge\frac{1}{3}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-\frac{4}{3}=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{4}{3}\end{cases}}\)

Vậy \(MinC=\frac{1}{3}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{4}{3}\end{cases}}\)

d)\(D=2x^2+y^2-2xy+4x+2024\)

\(=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+2020\)

\(=\left(x-y\right)^2+\left(x+2\right)^2+2020\ge2020\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y=0\\x+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y\\x=-2\end{cases}}\)\(\Leftrightarrow x=y=-2\)

Vậy \(MinD=2020\Leftrightarrow x=y=-2\)

5 tháng 11 2017

1.

a. x2 - 2x + 1 = 0

x2 - 2x*1 + 12 = 0

(x-1)2 = 0

............( tới đây tui bí rùi tự suy nghĩ rùi lm tiếp ik)

1, Tìm x biết:

a, x2 - 2x +1 = 0

(x-1)2 = 0

x-1 = 0

x = 1. Vậy ...

b, ( 5x + 1)2 - (5x - 3) ( 5x + 3) = 30

25x2 +10x + 1 - (25x2 -9) = 30

25x2 +10x + 1 - 25x2 +9 = 30

10x + 10 =30

10(x+1) = 30

x+1 =3

x = 2. vậy ...

c, ( x - 1) ( x2 + x + 1) - x ( x +2 ) ( x - 2) = 5

(x3 - 1) - x(x2 -4) = 5

x3 - 1 - x3 + 4x = 5

4x - 1 = 5

4x = 6

x = \(\dfrac{3}{2}\) .vậy ...

d, ( x - 2)3 - ( x - 3) ( x2 + 3x + 9 ) + 6 ( x + 1)2 = 15

x3 - 6x2 + 12x - 8 - (x3 - 27) + 6 (x2 + 2x +1) =15

x3 - 6x2 + 12x - 8 - x3 + 27 + 6x2 + 12x +6 =15

24x + 25 = 15

24x = -10

x = \(\dfrac{-5}{12}\) vậy ...

2 tháng 7 2017

a) MTC : \(\left(x+1\right)\left(x^2-x+1\right)\)

Quy đồng :

\(\frac{x-1}{x^3+1}=\frac{x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\frac{2x}{x^2-x+1}=\frac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\frac{2}{x+1}=\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

b ) MTC : \(10x\left(2y-x\right)\left(2y+x\right)\)

\(\frac{7}{5x}=\frac{7.2.\left(2y-x\right)\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{4}{x-2y}=\frac{-4.10x.\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}=\frac{-40x\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)

c ) MTC : \(\left(x+2\right)^3\)

\(\frac{6x^2}{x^3+6x^2+12x+8}=\frac{6x^2}{\left(x+2\right)^3}\)

\(\frac{3x}{x^2+4x+4}=\frac{3x}{\left(x+2\right)^2}=\frac{3x\left(x+2\right)}{\left(x+2\right)^3}\)

\(\frac{2}{2x+4}=\frac{1}{x+2}=\frac{\left(x+2\right)^2}{\left(x+2\right)^3}\)

4 tháng 12 2018

a) \(\left(3x-5\right)\left(2x+3\right)-\left(2x-3\right)\left(3x+7\right)-2x\left(x-4\right)\)

\(=\left(6x^2-x-15\right)-\left(6x^2+5x-21\right)-\left(2x^2-8x\right)\)

\(=6x^2-x-15-6x^2-5x+21-2x^2+8x\)

\(=-2x^2+2x+6\)

\(=-2\left(x^2-x-3\right)\)

b) \(\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)

\(=\left(x^2+2\right)^2-\left(x^2-4\right)\left(x^2+4\right)\)

\(=\left(x^2+2\right)^2-\left(x^4-16\right)\)

\(=\left(x^4+4x^2+4\right)-\left(x^4-16\right)\)

\(=x^4+4x^2+4-x^4+16\)

\(=4x^2+20\)

\(=4\left(x^2+5\right)\)

c) \(\left(2x-y\right)^2-2\left(x+3y\right)^2-\left(1+3x\right)\left(3x-1\right)\)

\(=\left(4x^2-4xy+y^2\right)-2\left(x^2+6xy+9y^2\right)-\left(9x^2-1\right)\)

\(=4x^2-4xy+y^2-2x^2-16xy-18y^2-9x^2+1\)

\(=-7x^2-20xy-17y^2+1\)

d) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)

\(=\left(x^6-3x^4+3x^2-1\right)-\left(x^6-1\right)\)

\(=x^6-3x^4+3x^2-1-x^6+1\)

\(=-3x^4+3x^2\)

\(=-3x^2\left(x^2-1\right)\)

\(=-3x^2\left(x-1\right)\left(x+1\right)\)

e) \(\left(2x-1\right)^2-2\left(4x^2-1\right)+\left(2x+1\right)^2\)

\(=\left(2x-1\right)^2-2\left(2x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)

\(=\left[\left(2x-1\right)-\left(2x+1\right)\right]^2\)

\(=\left(2x-1-2x-1\right)^2\)

\(=\left(-2\right)^2=4\)

g) \(\left(x-y+z\right)^2+\left(y-z\right)^2-2\left(x-y+z\right)\left(z-y\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(x-y+z+y+z\right)^2\)

\(=\left(x+2z\right)^2\)

h) \(\left(2x+3\right)^2+\left(2x+5\right)^2-\left(4x+6\right)\left(2x+5\right)\)

\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\)

\(=\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\)

\(=\left(2x+3-2x-5\right)^2\)

\(=\left(-2\right)^2=4\)

i) \(5x^2-\dfrac{10x^3+15x^2-5x}{-5x}-3\left(x+1\right)\)

\(=5x^2-\dfrac{-5x\left(-2x^2-3x+1\right)}{-5x}-3\left(x+1\right)\)

\(=5x^2-\left(-2x^2-3x+1\right)-3\left(x+1\right)\)

\(=5x^2+2x^2+3x-1-3x-3\)

\(=7x^2-4\)