Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này chơi Delta nha
\(P=\frac{x^2+1}{x^2-x+1}\Rightarrow P-2=\frac{x^2+1-2x^2+2x-2}{x^2-x+1}=\frac{-\left(x^2-2x+1\right)}{x^2-x+1}=\frac{-\left(x-1\right)^2}{x^2-x+1}\)
\(\Rightarrow P=2-\frac{\left(x-1\right)^2}{x^2-x+1}\le2\)
Max P = 2 \(\Leftrightarrow x=1\)
\(P=\frac{x^2+1}{x^2-x+1}\Rightarrow P-\frac{2}{3}=\frac{x^2+1-\frac{2}{3}\left(x^2-x+1\right)}{x^2-x+1}=\frac{\frac{1}{3}\left(x^2+2x+1\right)}{x^2-x+1}=\frac{\frac{1}{3}\left(x+1\right)^2}{x^2-x+1}\)
\(\Rightarrow P=\frac{2}{3}+\frac{\frac{1}{3}\left(x+1\right)^2}{x^2-x+1}\ge\frac{2}{3}\)
Min P = \(\frac{2}{3}\Leftrightarrow x=-1\)
Vậy ...
\(Q\ge0\Leftrightarrow x=0\)
Chia cả tử và mẫu cho x^2 được :
\(Q=\frac{1}{1-\frac{5}{x}+\frac{7}{x^2}}\)
Đặt \(\frac{1}{x}=a\) , ta có :
\(Q=\frac{1}{1-5a+7a^2}=\frac{1}{7\left(a^2-\frac{5}{7}a+\frac{25}{196}+\frac{3}{196}\right)}=\frac{1}{7\left[\left(a-\frac{5}{14}\right)^2+\frac{3}{196}\right]}\le\frac{1}{7.\frac{3}{196}}=\frac{28}{3}\)Dấu " = " xảy ra \(\Leftrightarrow a=\frac{5}{14}\Leftrightarrow\frac{1}{x}=\frac{5}{14}\Leftrightarrow x=\frac{14}{5}\)
Vậy ...
\(A=\left[\left(2x\right)^2+2.2x.y+y^2\right]+\left(16y^2-8y+1\right)\)
\(=\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)
Đẳng thức xảy ra khi \(x=-\frac{1}{8};y=\frac{1}{4}\)
\(B=\frac{2x^2-\left(x^2+2\right)}{x^2+2}=\frac{2x^2}{x^2+2}-2\ge-1\)
Đẳng thức xảy ra khi x =0
Tí làm tiếp
giải câu b trc nha
= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009
vậy min=2009 khi x=1
https://olm.vn//hoi-dap/question/57101.html
Tham khảo đây nhá bạn