\(\frac{1}{2x^2-5x+5}\)\(\)

b) t...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

giải câu b trc nha

= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009

vậy min=2009 khi x=1

28 tháng 3 2018

https://olm.vn//hoi-dap/question/57101.html     

Tham khảo đây nhá bạn

26 tháng 7 2016

a. \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

vì \(\left(x-1\right)^2\ge0\) với mọi x

=> (x-1)^2 +4 \(\ge\) vợi mọi x

Pmin=4 <=> x-1=0 <=>x=1

 

 

26 tháng 7 2016

1.

b)\(M=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu = xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\) và \(y+3=0\)

\(\Leftrightarrow x=\frac{1}{2}\) và \(y=-3\)

Vậy GTNN của M là \(\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)và \(y=-3\)

24 tháng 11 2016

a)\(\frac{x^2+5x+4}{x^2-1}=\frac{A}{x^2-2x+1}\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+4\right)}{\left(x+1\right)\left(x-1\right)}=\frac{A}{\left(x-1\right)^2}\)

\(\Leftrightarrow\frac{x+4}{x-1}=\frac{A}{\left(x-1\right)^2}\). Nhân 2 vế ở tử với x-1 ta có:

\(x+4=\frac{A}{x-1}\Leftrightarrow A=\left(x-1\right)\left(x+4\right)=x^2+3x-4\)

b)\(\frac{x^2-3x}{2x^2-7x+3}=\frac{x^2+4x}{A}\)

\(\Leftrightarrow\frac{x\left(x-3\right)}{\left(2x-1\right)\left(x-3\right)}=\frac{x\left(x+4\right)}{A}\)

\(\Leftrightarrow\frac{x}{2x-1}=\frac{x\left(x+4\right)}{A}\).Nhân 2 vế ở mẫu với x ta có:

\(2x-1=\frac{x+4}{A}\)\(\Leftrightarrow\left(2x-1\right)\left(x+4\right)=A\Leftrightarrow A=2x^2+7x-4\)

 

 

13 tháng 10 2016

a)\(A=4x-x^2+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left(x^2-4x+4\right)+7\)

\(=-\left(x-2\right)^2+7\le7\)

Dấu = khi \(x=2\)

Vậy MaxA=7 khi \(x=2\)

b)\(B=x-x^2\)

\(=-\left(x^2-x\right)\)

\(=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)

\(=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu = khi \(x=\frac{1}{2}\)

Vậy MaxB=\(\frac{1}{4}\)khi \(x=\frac{1}{2}\)

 

 

 

 

13 tháng 10 2016

\(A=4x-x^2+3=7-x^2+4x-4=7-\left(x-2\right)^2\le7\)

\(MaxA=7\Leftrightarrow x=2\)

\(B=x-x^2=\frac{5}{4}-x^2+x-\frac{1}{4}=\frac{5}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{5}{4}\)

\(MaxB=\frac{5}{4}\Leftrightarrow x=\frac{1}{2}\)

\(N=2x-2x^2-5=-\frac{9}{2}-2x^2+2x-\frac{1}{2}=-\frac{9}{2}-2\left(x-\frac{1}{4}\right)^2\le-\frac{9}{2}\)

\(MaxN=-\frac{9}{2}\Leftrightarrow x=\frac{1}{4}\)

10 tháng 1 2020

Phân thức đại số

11 tháng 1 2020

bạn có thể giải mấy câu kia luôn

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha