Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Đẹp Trai Không Bao Giờ Sai - Toán lớp 7 | Học trực tuyến tương tự
T đã hứa thì t sẽ làm:v
\(3\left|2x+1\right|+4\left|2y-1\right|\le7\)
\(\Rightarrow3\left|2x+1\right|\le7-4\left|2y-1\right|\le7\)
mà: \(\left\{{}\begin{matrix}3 \left|2x+1\right|\ge0\\3\left|2x+1\right|⋮3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0\le3\left|2x+1\right|\le7\\3\left|2x+1\right|⋮3\end{matrix}\right.\)
Vì x nguyên nên: \(3\left|2x+1\right|\in\left\{0;3;6\right\}\)
\(\Rightarrow\left[{}\begin{matrix}\left|2x+1\right|=0\\\left|2x+1\right|=1\\\left|2x+1\right|=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\left(loại\right)\\\left[{}\begin{matrix}2x+1=1\Leftrightarrow x=0\left(chọn\right)\\2x+1=-1\Leftrightarrow x=-1\left(chọn\right)\end{matrix}\right.\\\left[{}\begin{matrix}2x+1=2\Leftrightarrow x=\dfrac{1}{2}\left(loại\right)\\2x+1=-2\Leftrightarrow x=-\dfrac{3}{2}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Với \(\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) thì: \(3\left|2x+1\right|=3\Leftrightarrow4\left|2y-1\right|\le7-3=4\)
Vì \(y\in Z\) nên: \(\left[{}\begin{matrix}4\left|2y-1\right|=4\\4\left|2y-1\right|=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}2y-1=1\Leftrightarrow y=1\left(chọn\right)\\2y-1=-1\Leftrightarrow y=0\left(chọn\right)\end{matrix}\right.\\2y=1\Leftrightarrow y=\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)
Vậy: \(\left(x;y\right)=\left(0;0\right);\left(0;1\right);\left(-1;1\right);\left(-1;0\right)\)
\(pt\Leftrightarrow\left|x+2\right|+\left|x+\dfrac{3}{5}\right|+\left|x+\dfrac{1}{2}\right|=10x\)
Ta có: \(\left|x+2\right|+ \left|x+\dfrac{3}{5}\right|+\left|x+\dfrac{1}{2}\right|\ge0\Leftrightarrow10x\ge0\Leftrightarrow x\ge0\)
Khi \(x\ge0\) thì: \(x+2+x+\dfrac{3}{5}+x+\dfrac{1}{2}=10x\)
\(\Rightarrow7x+2+\dfrac{3}{5}+\dfrac{1}{2}=\dfrac{31}{10}\Leftrightarrow x=\dfrac{31}{70}\)
Ta có: \(\left|3x-5\right|+\left|3x+1\right|=\left|5-3x\right|+\left|3x+1\right|\ge\left|5-3x+3x+1\right|=6\)
Dấu "=" xảy ra \(\Leftrightarrow\left(5-3x\right)\left(3x+1\right)\ge0\Leftrightarrow-\dfrac{1}{3}\le x\le\dfrac{5}{3}\)
Vậy \(-\dfrac{1}{3}\le x\le\dfrac{5}{3}\)
Lm luôn k ghi lại đề nhé:
\(\Rightarrow\dfrac{-\dfrac{4}{9}-\dfrac{1}{2}}{-\dfrac{13}{6}}+x=1\)
\(\Rightarrow\dfrac{17}{39}+x=1\Rightarrow x=1-\dfrac{17}{39}=\dfrac{22}{39}\)
P/s: toán tuổi thơ :v k tốn chất xám
\(\left|2x-6\right|+5x=10\)
\(\Leftrightarrow\left|2x-6\right|=10-5x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=10-5x\\2x-6=5x-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+5x=10+6\\-6+10=5x-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}7x=16\\3x=4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{16}{7}\\x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy...
(\(x-3\))2 + (2y - 1)2 = 0
(\(x\) - 3)2 ≥ 0 ∀ \(x\)
(2y - 1)2 ≥ 0 ∀ y
⇔ (\(x\) - 3)2 + (2y - 1)2= 0
⇔ \(\left\{{}\begin{matrix}x-3=0\\3y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{3}\end{matrix}\right.\)
(4\(x-3\))4 + (y + 2)2 ≤ 0
(4\(x\) - 3)4 ≥ 0 ∀ \(x\)
(y + 2)2 ≥ 0 ∀ y
⇔(4\(x\) - 3)4 + (y+2)2 ≥ 0
⇔ (4\(x\) - 3)4 + (y + 2)2 ≤ 0 ⇔
⇔\(\left\{{}\begin{matrix}4x-3=0\\y+2=0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-2\end{matrix}\right.\)
Với mọi x,y ta có :
\(+,\left|x-2y-1\right|\ge0\)
+, \(\left|y-4\right|+2\ge2\Leftrightarrow\dfrac{10}{\left|x-4\right|+2}\le5\)
Dấu "=" xảy ra khi :
\(\left\{{}\begin{matrix}\left|x-2y-1\right|=5\\\dfrac{10}{\left|x-4\right|+2}=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=9\end{matrix}\right.\)
Vậy ..
làm sao được y=4 vậy?Nguyễn Thanh Hằng