Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi x,y ta có :
\(+,\left|x-2y-1\right|\ge0\)
+, \(\left|y-4\right|+2\ge2\Leftrightarrow\dfrac{10}{\left|x-4\right|+2}\le5\)
Dấu "=" xảy ra khi :
\(\left\{{}\begin{matrix}\left|x-2y-1\right|=5\\\dfrac{10}{\left|x-4\right|+2}=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=9\end{matrix}\right.\)
Vậy ..
Câu hỏi của Đẹp Trai Không Bao Giờ Sai - Toán lớp 7 | Học trực tuyến tương tự
\(pt\Leftrightarrow\left|x+2\right|+\left|x+\dfrac{3}{5}\right|+\left|x+\dfrac{1}{2}\right|=10x\)
Ta có: \(\left|x+2\right|+ \left|x+\dfrac{3}{5}\right|+\left|x+\dfrac{1}{2}\right|\ge0\Leftrightarrow10x\ge0\Leftrightarrow x\ge0\)
Khi \(x\ge0\) thì: \(x+2+x+\dfrac{3}{5}+x+\dfrac{1}{2}=10x\)
\(\Rightarrow7x+2+\dfrac{3}{5}+\dfrac{1}{2}=\dfrac{31}{10}\Leftrightarrow x=\dfrac{31}{70}\)
nè mình giúp được ko
bài 2:\(\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}=1\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{y}=1\)
\(\left(\frac{1}{x}+\frac{1}{x}\right)+\left(\frac{1}{y}+\frac{1}{y}\right)=1\)
\(\left(\frac{2}{x}\right)+\left(\frac{2}{y}\right)=1\)
\(\frac{4}{xy}=1\)
\(xy=4:1\)
xy = 4
làm mò chưa chắc chắn
\(\left\{{}\begin{matrix}\left|x-2y-1\right|+5\ge5\\\dfrac{10}{\left|y-4\right|+2}\le5\end{matrix}\right.\)
Dấu "=" khi: \(\left\{{}\begin{matrix}y=4\\x=9\end{matrix}\right.\)
b) xem lại đề
a) \(\Leftrightarrow\left|x-3\right|=0;\left|y-2x\right|=0;\left|2z-x+y\right|=0\)
\(\Leftrightarrow x=3;y=2x;2z=-y+x\)
Ta có : y = 2x => y = 2 . 3 = 6
và 2z = -y + x => 2z = -6 + 3 = -3 => z = \(-\frac{3}{2}\)
b) \(\Leftrightarrow\left|x-y\right|+\left|2y+x-\frac{1}{2}\right|+\left|x+y+z\right|=0\) (vĩ mỗi số hạng trong tổng đều lớn hơn hoặc bằng 0)
\(\Leftrightarrow\left|x-y\right|=0;\left|2y+x-\frac{1}{2}\right|=0;\left|x+y+z\right|=0\)
\(\Leftrightarrow x=y;2y+x=\frac{1}{2};x+y=-z\)
Vì x = y nên \(2y+x=3y=\frac{1}{2}\Rightarrow x=y=\frac{1}{2}:3=\frac{1}{6}\)
và \(-z=x+y=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3}\Rightarrow z=-\frac{1}{3}\)
mik rất hiểu tâm trạng bạn
T đã hứa thì t sẽ làm:v
\(3\left|2x+1\right|+4\left|2y-1\right|\le7\)
\(\Rightarrow3\left|2x+1\right|\le7-4\left|2y-1\right|\le7\)
mà: \(\left\{{}\begin{matrix}3 \left|2x+1\right|\ge0\\3\left|2x+1\right|⋮3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0\le3\left|2x+1\right|\le7\\3\left|2x+1\right|⋮3\end{matrix}\right.\)
Vì x nguyên nên: \(3\left|2x+1\right|\in\left\{0;3;6\right\}\)
\(\Rightarrow\left[{}\begin{matrix}\left|2x+1\right|=0\\\left|2x+1\right|=1\\\left|2x+1\right|=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\left(loại\right)\\\left[{}\begin{matrix}2x+1=1\Leftrightarrow x=0\left(chọn\right)\\2x+1=-1\Leftrightarrow x=-1\left(chọn\right)\end{matrix}\right.\\\left[{}\begin{matrix}2x+1=2\Leftrightarrow x=\dfrac{1}{2}\left(loại\right)\\2x+1=-2\Leftrightarrow x=-\dfrac{3}{2}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Với \(\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) thì: \(3\left|2x+1\right|=3\Leftrightarrow4\left|2y-1\right|\le7-3=4\)
Vì \(y\in Z\) nên: \(\left[{}\begin{matrix}4\left|2y-1\right|=4\\4\left|2y-1\right|=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}2y-1=1\Leftrightarrow y=1\left(chọn\right)\\2y-1=-1\Leftrightarrow y=0\left(chọn\right)\end{matrix}\right.\\2y=1\Leftrightarrow y=\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)
Vậy: \(\left(x;y\right)=\left(0;0\right);\left(0;1\right);\left(-1;1\right);\left(-1;0\right)\)