Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi x,y ta có :
\(+,\left|x-2y-1\right|\ge0\)
+, \(\left|y-4\right|+2\ge2\Leftrightarrow\dfrac{10}{\left|x-4\right|+2}\le5\)
Dấu "=" xảy ra khi :
\(\left\{{}\begin{matrix}\left|x-2y-1\right|=5\\\dfrac{10}{\left|x-4\right|+2}=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=9\end{matrix}\right.\)
Vậy ..
T đã hứa thì t sẽ làm:v
\(3\left|2x+1\right|+4\left|2y-1\right|\le7\)
\(\Rightarrow3\left|2x+1\right|\le7-4\left|2y-1\right|\le7\)
mà: \(\left\{{}\begin{matrix}3 \left|2x+1\right|\ge0\\3\left|2x+1\right|⋮3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0\le3\left|2x+1\right|\le7\\3\left|2x+1\right|⋮3\end{matrix}\right.\)
Vì x nguyên nên: \(3\left|2x+1\right|\in\left\{0;3;6\right\}\)
\(\Rightarrow\left[{}\begin{matrix}\left|2x+1\right|=0\\\left|2x+1\right|=1\\\left|2x+1\right|=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\left(loại\right)\\\left[{}\begin{matrix}2x+1=1\Leftrightarrow x=0\left(chọn\right)\\2x+1=-1\Leftrightarrow x=-1\left(chọn\right)\end{matrix}\right.\\\left[{}\begin{matrix}2x+1=2\Leftrightarrow x=\dfrac{1}{2}\left(loại\right)\\2x+1=-2\Leftrightarrow x=-\dfrac{3}{2}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Với \(\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) thì: \(3\left|2x+1\right|=3\Leftrightarrow4\left|2y-1\right|\le7-3=4\)
Vì \(y\in Z\) nên: \(\left[{}\begin{matrix}4\left|2y-1\right|=4\\4\left|2y-1\right|=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}2y-1=1\Leftrightarrow y=1\left(chọn\right)\\2y-1=-1\Leftrightarrow y=0\left(chọn\right)\end{matrix}\right.\\2y=1\Leftrightarrow y=\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)
Vậy: \(\left(x;y\right)=\left(0;0\right);\left(0;1\right);\left(-1;1\right);\left(-1;0\right)\)
\(pt\Leftrightarrow\left|x+2\right|+\left|x+\dfrac{3}{5}\right|+\left|x+\dfrac{1}{2}\right|=10x\)
Ta có: \(\left|x+2\right|+ \left|x+\dfrac{3}{5}\right|+\left|x+\dfrac{1}{2}\right|\ge0\Leftrightarrow10x\ge0\Leftrightarrow x\ge0\)
Khi \(x\ge0\) thì: \(x+2+x+\dfrac{3}{5}+x+\dfrac{1}{2}=10x\)
\(\Rightarrow7x+2+\dfrac{3}{5}+\dfrac{1}{2}=\dfrac{31}{10}\Leftrightarrow x=\dfrac{31}{70}\)
Ta có: \(\left|3x-5\right|+\left|3x+1\right|=\left|5-3x\right|+\left|3x+1\right|\ge\left|5-3x+3x+1\right|=6\)
Dấu "=" xảy ra \(\Leftrightarrow\left(5-3x\right)\left(3x+1\right)\ge0\Leftrightarrow-\dfrac{1}{3}\le x\le\dfrac{5}{3}\)
Vậy \(-\dfrac{1}{3}\le x\le\dfrac{5}{3}\)
Lm luôn k ghi lại đề nhé:
\(\Rightarrow\dfrac{-\dfrac{4}{9}-\dfrac{1}{2}}{-\dfrac{13}{6}}+x=1\)
\(\Rightarrow\dfrac{17}{39}+x=1\Rightarrow x=1-\dfrac{17}{39}=\dfrac{22}{39}\)
P/s: toán tuổi thơ :v k tốn chất xám
\(\left|2x-6\right|+5x=10\)
\(\Leftrightarrow\left|2x-6\right|=10-5x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=10-5x\\2x-6=5x-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+5x=10+6\\-6+10=5x-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}7x=16\\3x=4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{16}{7}\\x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy...
\(1)\)
\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)
\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận )
TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại )
Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)
\(2)\)
\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)
\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)
\(\Rightarrow\)\(VT\ge VP\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại )
TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận )
\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)
Vậy \(1\le x\le5\) và \(y=-1\)
Câu hỏi của Đẹp Trai Không Bao Giờ Sai - Toán lớp 7 | Học trực tuyến tương tự