\(\dfrac{2.\dfrac{-1}{2}.\left(\dfrac{2}{3}\right)^2-3.\left(\dfrac{-1}{2}\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

Lm luôn k ghi lại đề nhé:

\(\Rightarrow\dfrac{-\dfrac{4}{9}-\dfrac{1}{2}}{-\dfrac{13}{6}}+x=1\)

\(\Rightarrow\dfrac{17}{39}+x=1\Rightarrow x=1-\dfrac{17}{39}=\dfrac{22}{39}\)

P/s: toán tuổi thơ :v k tốn chất xám

11 tháng 10 2017

làm đầy đủ dc ko

29 tháng 10 2017

a)hình như đề sai thì phải

sửa lại

\(\left(\dfrac{1}{7}-\dfrac{2}{5}\right).\dfrac{2016}{2017}+\left(\dfrac{13}{7}+\dfrac{2}{5}\right).\dfrac{2016}{2017}\)

=\(\dfrac{2016}{2017}.\left(\dfrac{1}{7}-\dfrac{2}{5}+\dfrac{13}{7}+\dfrac{2}{5}\right)\)

=\(\dfrac{2016}{2017}.2=\dfrac{4032}{2017}\)

30 tháng 8 2017

a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (1)

\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\dfrac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)(2)

Từ (1) và (2) suy ra: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

b.M = \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{50^2}\right)\)

= \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{2499}{2500}\)

= \(\dfrac{1.3.2.4.3.5...49.51}{2^2.3^2.4^2...50^2}\)

\(\dfrac{51}{2.50}=\dfrac{51}{100}\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2017

Lời giải:

a)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow \left(\frac{a}{b}\right)^2=\left(\frac{b}{d}\right)^2=\frac{(a+c)^2}{(b+d)^2}(1)\)

Mặt khác, \(\frac{a}{b}=\frac{c}{d}\Rightarrow \frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}(2)\) (áp dụng tính chất dãy tỉ số bằng nhau)

Từ \((1),(2)\Rightarrow \frac{(a+c)^2}{(b+d)^2}=\frac{a^2+c^2}{b^2+d^2}\)

b) Vì \(1-\frac{1}{2^2};1-\frac{1}{3^2};...;1-\frac{1}{50^2}<1\) nên:

\(\left\{\begin{matrix} \left \{ 1-\frac{1}{2^2} \right \}=1-\frac{1}{2^2}\\ \left \{ 1-\frac{1}{3^2} \right \}=1-\frac{1}{3^2}\\ ....\\ \left \{ 1-\frac{1}{50^2} \right \}=1-\frac{1}{50^2}\end{matrix}\right.\)

\(\Rightarrow M=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)....\left(1-\frac{1}{50^2}\right)\)

\(\Leftrightarrow M=\frac{(2^2-1)(3^2-1)(4^2-1)....(50^2-1)}{(2.3....50)^2}\)

\(\Leftrightarrow M=\frac{[(2-1)(3-1)...(50-1)][(2+1)(3+1)...(50+1)]}{(2.3.4...50)^2}\)

\(\Leftrightarrow M=\frac{(2.3...49)(3.4.5...51)}{(2.3.4...50)^2}=\frac{(2.3.4...49)^2.50.51}{2.(2.3....49)^2.50^2}=\frac{50.51}{2.50^2}=\frac{51}{100}\)

a: \(\dfrac{x+1}{5}+\dfrac{x+1}{6}=\dfrac{x+1}{7}+\dfrac{x+1}{8}\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}-\dfrac{1}{8}\right)=0\)

=>x+1=0

hay x=-1

b: \(\Leftrightarrow\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)=\left(\dfrac{x-3}{2007}-1\right)+\left(\dfrac{x-4}{2006}-1\right)\)

=>x-2010=0

hay x=2010

c: \(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Leftrightarrow\dfrac{x}{\left(x+2\right)\left(x+17\right)}=\dfrac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}\)

=>x=15

QT
Quoc Tran Anh Le
Giáo viên
2 tháng 12 2017

a) \(\dfrac{15}{34}+\dfrac{7}{21}+\dfrac{19}{34}+\dfrac{2}{3}-1\dfrac{15}{17}\)

\(=\left(\dfrac{15}{34}+\dfrac{19}{34}\right)+\left(\dfrac{7}{21}+\dfrac{2}{3}\right)-1\dfrac{15}{17}\)

\(=1+1-1\dfrac{15}{17}=\dfrac{2}{17}\)

17 tháng 5 2017

\(\dfrac{-1}{4}x+\dfrac{2}{3}=\dfrac{5}{9}\)\(\Rightarrow\)\(\dfrac{-1}{4}x=\dfrac{5}{9}-\dfrac{2}{3}\)=\(\dfrac{-1}{9}\)

\(\Rightarrow\) x = \(\dfrac{-1}{9}:\dfrac{-1}{4}\)=\(\dfrac{4}{9}\).

\(x.\left(\dfrac{3}{5}\right)^3=\dfrac{3}{5}\)

\(\Rightarrow\)x=\(\dfrac{3}{5}:\left(\dfrac{3}{5}\right)^3=\left(\dfrac{3}{5}\right)^{-2}\)= \(2\dfrac{7}{9}\)

\(\left|x\right|\) + \(\dfrac{1}{5}=2-\left(\dfrac{2}{3}-\dfrac{3}{4}\right)\)=2 - \(\dfrac{-1}{12}\)=2\(\dfrac{1}{12}\)

\(\Rightarrow\)\(\left|x\right|\)=\(2\dfrac{1}{12}\)-\(\dfrac{1}{5}\)=\(1\dfrac{53}{60}\)

\(\Rightarrow\)x=\(\left[{}\begin{matrix}1\dfrac{53}{60}\\-1\dfrac{53}{60}\end{matrix}\right.\)

\(\left(\dfrac{-3}{4}\right)^x=\dfrac{81}{256}\)=\(\dfrac{(-3)^4}{4^4}\)=\(\left(\dfrac{-3}{4}\right)^4\)

\(\Rightarrow\) x = 4

17 tháng 5 2017

14 Mẹo Vặt Sáng Tạo Dành Cho Học Sinh - YouTube

thử xem mẹo thứ 5 đi chứ theo mk đây là bài toán dễ lớp 6

5 tháng 10 2017

ahihi

6 tháng 10 2017

Cái này dễ lắm. Mình giải luôn nhé!

a) \(\left[{}\begin{matrix}\dfrac{1}{7}x-\dfrac{2}{7}=0\Leftrightarrow x=\dfrac{2}{7}:\dfrac{1}{7}\Leftrightarrow x=2\\-\dfrac{1}{5}x+\dfrac{3}{5}=0\Leftrightarrow x=-\dfrac{3}{5}:\left(-\dfrac{1}{5}\right)\Leftrightarrow x=3\\\dfrac{1}{3}x+\dfrac{4}{3}=0\Leftrightarrow x=-\dfrac{4}{3}:\dfrac{1}{3}\Leftrightarrow x=-4\end{matrix}\right.\)

Vậy x=2 hoặc x=3 hoặc x=-4

b)\(x\left(\dfrac{1}{6}+\dfrac{1}{10}-\dfrac{4}{15}\right)+1=0\)

\(x.0+1=0\)

\(1=0\) ( vô lí)

Vậy không có giá trị của x nào thỏa mãn

7 tháng 3 2017

101/12

7 tháng 3 2017

Mình cần cách trình bày bài!!!limdim

4 tháng 7 2017

Bài 1:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=10\end{matrix}\right.\)

Vậy x = 6, y = 10

Bài 2:

Ta có: \(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)

\(\Rightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)

\(\Rightarrow ab-6a+5b-30=ab+6a-5b-30\)

\(\Rightarrow-6a+5b=6a-5b\)

\(\Rightarrow10b=12a\)

\(\Rightarrow6a=5b\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{5}{6}\)

\(\Rightarrowđpcm\)

4 tháng 7 2017

B1 :

+ Theo bài ra :

\(\dfrac{x}{3}=\dfrac{y}{5}\left(1\right)\)\(x+y=16\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\)

+ Do đó :

\(\dfrac{x}{3}=2\Rightarrow x=2.3=6\)

\(\dfrac{y}{5}=2\Rightarrow y=2.5=10\)

Vậy x = 6 ; y = 10