Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh:
\(a,\sqrt{25+9}\)và \(\sqrt{25}+\sqrt{9}\)
Ta có:
\(\sqrt{25+9}=\sqrt{34}< \sqrt{36}=6\) \(\left(1\right)\)
\(\sqrt{25}+\sqrt{9}=\sqrt{5^2}+\sqrt{3^2}=5+3=8\) \(\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)
\(b,\sqrt{25-16}\) và \(\sqrt{25}-\sqrt{16}\)
Tương tự:)
a) Tính √25 + √9 rồi so sánh kết quả với .
Trả lời: < √25 + √9.
b) Ta có: = a + b và
= + 2√a.√b +
= a + b + 2√a.√b.
Vì a > 0, b > 0 nên √a.√b > 0.
Do đó < √a + √b
a) Tính √25 + √9 rồi so sánh kết quả với .
Trả lời: < √25 + √9.
b) Ta có: = a + b và
= + 2√a.√b +
= a + b + 2√a.√b.
Vì a > 0, b > 0 nên √a.√b > 0.
Do đó < √a + √b
\(A=\frac{2\sqrt{x}\left(\sqrt{x}+3\right)-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{2x+6\sqrt{x}-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}}{\sqrt{x}+3}\)
\(B=\frac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\frac{\sqrt{x}}{\sqrt{x}-5}\)
b/ \(P=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
Có \(\sqrt{x}-5< \sqrt{x}+3\Rightarrow P< 1\)
c) ta rút gọn được B \(=\frac{\sqrt{x}}{\sqrt{x}-5}=\frac{\sqrt{x}-5+5}{\sqrt{x}-5}=1+\frac{5}{\sqrt{x}-5}\)
để B nhỏ nhất thì \(\sqrt{x}-5\) lớn nhất và \(\left(\sqrt{x}-5\right)\in U\left(5\right)=\left\{1;5\right\}\)
suy ra \(\sqrt{x}-5=5\Leftrightarrow x=100\left(tm\right)\)
vậy min B=2 \(\Leftrightarrow x=100\)
1, Ta thấy \(2\sqrt{5}-5\sqrt{2}< 0\)
\(1>0\)
\(\Leftrightarrow2\sqrt{5}-5\sqrt{2}< 1\)
Vậy..
2, Ta thấy \(\sqrt{9}=3>0\)
\(\sqrt{25}-\sqrt{26}< 0\)
\(\Leftrightarrow\sqrt{9}>\sqrt{25}-\sqrt{26}\)
Vậy...
1) ta có : \(2\sqrt{5}=\sqrt{20}\) và \(5\sqrt{2}=\sqrt{50}\)
mà \(\sqrt{20}< \sqrt{50}\) \(\Rightarrow\) \(2\sqrt{5}-5\sqrt{2}\) \(< 0\)
mà \(1>0\)
\(\Rightarrow\) \(2\sqrt{5}-5\sqrt{2}< 1\)
2) ta có : \(\sqrt{25}< \sqrt{26}\) \(\Rightarrow\) \(\sqrt{25}-\sqrt{26}\) \(< 0\)
mà \(\sqrt{9}>0\) \(\Rightarrow\) \(\sqrt{9}>\sqrt{25}-\sqrt{26}\)
1) \(A=\left(\sqrt{7-\sqrt{21}+4\sqrt{5}}\right)^2=7-\sqrt{21}+4\sqrt{5}\)
\(B=\left(\sqrt{5}-1\right)^2=6-2\sqrt{5}\)
\(\Rightarrow A-B=1-\sqrt{21}+6\sqrt{5}=\left(1+\sqrt{180}\right)-\sqrt{21}>0\)
\(\Rightarrow A>B\Rightarrow\sqrt{7-\sqrt{21}+4\sqrt{5}}>\sqrt{5}-1\)
2) \(C=\left(\sqrt{5}+\sqrt{10}+1\right)^2=5+10+1+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}\)
\(=26+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}>26+10>35=\left(\sqrt{35}\right)^2\)
Vậy \(\sqrt{5}+\sqrt{10}+1>\sqrt{35}\)
3) \(\left(\frac{15-2\sqrt{10}}{3}\right)^2=\frac{225-60\sqrt{10}+40}{9}=\frac{265-60\sqrt{10}}{9}=\frac{265}{9}-\frac{20\sqrt{10}}{3}< 15\)
Vậy nên \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)
Ta có: