\(a,\sqrt{25+9}\)và \(\sqrt{25}+\sqrt{9}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2018

So sánh:

\(a,\sqrt{25+9}\)và \(\sqrt{25}+\sqrt{9}\)

Ta có:

\(\sqrt{25+9}=\sqrt{34}< \sqrt{36}=6\) \(\left(1\right)\)

\(\sqrt{25}+\sqrt{9}=\sqrt{5^2}+\sqrt{3^2}=5+3=8\) \(\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)

\(b,\sqrt{25-16}\) và \(\sqrt{25}-\sqrt{16}\)

Tương tự:)

14 tháng 8 2016

b) Ta sẽ chứng minh bằng biến đổi tương đương :)

Ta có : \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)

\(\Leftrightarrow a+b-2\sqrt{ab}< a-b\)

\(\Leftrightarrow2b-2\sqrt{ab}< 0\)

\(\Leftrightarrow2\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)< 0\) (1)

Vì a>b nên \(b-a< 0\Leftrightarrow\left(\sqrt{b}-\sqrt{a}\right)\left(\sqrt{b}+\sqrt{a}\right)< 0\Leftrightarrow\sqrt{b}-\sqrt{a}< 0\) (vì \(\sqrt{a}+\sqrt{b}>0\))

Lại có \(\sqrt{b}>0\) \(\Rightarrow2\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)< 0\) đúng.

Vì bđt cuối đúng nên bđt ban đầu được chứng minh

14 tháng 8 2016

\(\sqrt{25-16}=\sqrt{9}=3\)

\(\sqrt{25}-\sqrt{16}=5-4=1\)

\(\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)

31 tháng 3 2017

a) HD: Thực hiện phép khai căn rồi so sánh kết quả.

Trả lời: > √25 - √16;.

b) HD: Ta có thể chứng minh rằng √a < + √b.

Nhưng điều này suy ra từ kết quả bài tập 26.b) SGK nếu lưu ý rằng

√a = .

20 tháng 7 2017

a) Ta có:

\(\sqrt{25-16}=\sqrt{9}=3\);

\(\sqrt{25}-\sqrt{16}=5-4=1\).

Vì 1 < 3 nên \(\sqrt{25}-\sqrt{16}< \sqrt{25-16}\).

b) Ta có:

\(\sqrt{a}=\sqrt{a-b+b}=\sqrt{(a-b)+b}\)

mà ta đã biết:

\(\sqrt{(a-b)+b}< \sqrt{a-b}+\sqrt{b}\)

\(\Leftrightarrow\sqrt{a}< \sqrt{a-b}+\sqrt{b}\)

\(\Leftrightarrow\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)

Vậy \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\).

31 tháng 3 2017

a) Tính √25 + √9 rồi so sánh kết quả với .

Trả lời: < √25 + √9.

b) Ta có: = a + b và

= + 2√a.√b +

= a + b + 2√a.√b.

Vì a > 0, b > 0 nên √a.√b > 0.

Do đó < √a + √b


3 tháng 4 2017

a) Tính √25 + √9 rồi so sánh kết quả với .

Trả lời: < √25 + √9.

b) Ta có: = a + b và

= + 2√a.√b +

= a + b + 2√a.√b.

Vì a > 0, b > 0 nên √a.√b > 0.

Do đó < √a + √b

24 tháng 8 2020

1.a)

\(2\sqrt{3}=\sqrt{12}>\sqrt{9}=3.\)

\(3\sqrt{2}=\sqrt{18}>\sqrt{16}=4.\)

Suy ra VT > 7

1.b)

\(\sqrt{16}+\sqrt{25}=4+5=9\)

2.a)

\(\sqrt{21-6\sqrt{6}}=\sqrt{\left(3\sqrt{2}\right)^2-6\sqrt{6}+3}=3\sqrt{2}-\sqrt{3}\)

b)\(\sqrt{9-2\sqrt{14}}=\sqrt{\frac{18-4\sqrt{14}}{2}}=\frac{\sqrt{14}-2}{\sqrt{2}}=\sqrt{7}-1\)

Các câu còn lại bạn làm tương tự nhé!

25 tháng 8 2020

c) \(\sqrt{4-\sqrt{7}}=\frac{1}{\sqrt{2}}.\sqrt{8-2\sqrt{7}}=\frac{1}{\sqrt{2}}\sqrt{7-2\sqrt{7}+1}\)

\(=\frac{1}{\sqrt{2}}\sqrt{\left(\sqrt{7}-1\right)^2}=\frac{\sqrt{2}\left(\sqrt{7}-1\right)}{2}\)

d) \(\sqrt{4+2\sqrt{3}-\sqrt{4-2\sqrt{3}}}=\sqrt{4+2\sqrt{3}-\sqrt{3-2\sqrt{3}+1}}\)

\(=\sqrt{4+2\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{4+2\sqrt{3}-\sqrt{3}+1}=\sqrt{5+\sqrt{3}}\)

23 tháng 6 2019

a,

\(\sqrt{0,0004}=0.02\)

\(\sqrt{\frac{16}{81}}=\frac{\sqrt{16}}{\sqrt{81}}=\frac{4}{9}\)

\(\sqrt{25}=5\)

\(\sqrt{0,16}=0,4\)

b,\(\sqrt{\frac{9}{16}}+\sqrt{\frac{25}{9}}\)

= \(\frac{\sqrt{9}}{\sqrt{16}}+\frac{\sqrt{25}}{\sqrt{9}}\)

= \(\frac{3}{4}+\frac{5}{3}\)

=\(\frac{29}{12}\)

21 tháng 8 2017

a) \(\sqrt{16}+\sqrt{1}-3\sqrt{9}=4+1-3.3=-4\)

b) \(\sqrt{\dfrac{4}{9}}-\sqrt{25}+\sqrt{100}=\dfrac{2}{3}-5+10=\dfrac{17}{3}\)

c) \(2\sqrt{169}+3\sqrt{196}-2\sqrt{289}\)

= \(2.13+3.14-2.17=34\)

30 tháng 6 2019

a)\(=\sqrt{\frac{5.5^2}{3^5.2^6}}=\sqrt{\frac{5}{3^5}}.\frac{5}{2^3}=\frac{5\sqrt{5.3^5}}{3^5.2^3}\)

b)\(=\left(3\sqrt{5}-2\sqrt{5}+\sqrt{5}\right):\sqrt{6}\)

\(=\frac{2\sqrt{5}}{\sqrt{6}}\)\(=\frac{\sqrt{30}}{3}\)

Câu c ttự

d)\(=\sqrt{2^8.5^2}=2^4.5=80\)

e)\(=\sqrt{\left(\frac{3}{4}\right)^2:\left(\frac{5}{6}\right)^2}=\frac{9}{10}\)

30 tháng 6 2019

Mình cảm ơn ạ

15 tháng 7 2017

a) \(\sqrt{\dfrac{25}{81}.\dfrac{16}{49}.\dfrac{196}{9}}=\sqrt{\dfrac{25}{81}}.\sqrt{\dfrac{16}{49}}.\sqrt{\dfrac{196}{9}}=\dfrac{5}{9}.\dfrac{4}{7}.\dfrac{14}{3}=\dfrac{40}{27}\)

b) \(\sqrt{3\dfrac{1}{16}.2\dfrac{14}{25}.2\dfrac{34}{81}}=\sqrt{\dfrac{49}{16}.\dfrac{64}{25}.\dfrac{196}{81}}=\sqrt{\dfrac{49}{16}}.\sqrt{\dfrac{64}{25}}.\sqrt{\dfrac{196}{81}}=\dfrac{7}{4}.\dfrac{8}{5}.\dfrac{14}{9}=\dfrac{196}{45}\)

c) \(\dfrac{\sqrt{640}.\sqrt{34,3}}{\sqrt{567}}=\sqrt{\dfrac{640.34,3}{567}}=\sqrt{\dfrac{64.49}{81}}=\dfrac{\sqrt{64}.\sqrt{49}}{\sqrt{81}}=\dfrac{8.7}{9}=\dfrac{56}{9}\)

d) \(\sqrt{21,6}.\sqrt{810}.\sqrt{11^2-5^2}=\sqrt{21,6.810.\left(11^2-5^2\right)}=\sqrt{216.81.\left(11+5\right)\left(11-5\right)}=\sqrt{36^2.9^2.4^2}=36.9.4=1296\)