K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

Ta có:

\(\frac{{AM}}{{MB}} = \frac{{3,6}}{{2,4}} = \frac{3}{2}\);\(\frac{{AN}}{{NC}} = \frac{{4,5}}{3} = \frac{3}{2}\).

Vì \(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}} = \frac{3}{2}\)

Theo định lí Thales đảo trong \(\Delta ABC\), ta có \(MN//BC\) (điều phải chứng minh).

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Xét \(\Delta HAE\) và \(\Delta FBE\) ta có:

\(AH = BF\) (gt)

\(\widehat {{\rm{HAE}}} = \widehat {{\rm{FBE}}} = 90^\circ \) (gt)

\(AE = BE\) (gt)

Suy ra \(\Delta HAE = \Delta FBE\) (c-g-c)

Suy ra \(HE = EF\)

Chứng minh tương tự ta có: \(EF = GF\); \(GF = GH\); \(GH = HE\)

Suy ra \(HE = EF = FG = GH\)

Suy ra \(EFGH\) là hình thoi

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Xét tam giác \(MPQ\)có  \(EF//MQ\) nên \(\Delta MPQ\backsim\Delta EPF\) (định lí) (1)

Xét tam giác \(MPQ\)có  \(DC//MP\) nên \(\Delta MPQ\backsim\Delta DCQ\) (định lí) (2)

Từ (1) và (2) \(\Delta EPF\backsim\Delta DCQ\) (tính chất tam giác đồng dạng)

b) Xét tam giác \(EPF\)có  \(IC//EP\) nên \(\Delta ICF\backsim\Delta EPF\) (định lí) (3)

Từ (1) và (3) suy ra, \(\Delta ICF\backsim\Delta MPQ\).

a: BD=căn 8^2+6^2=10cm

AH=6*8/10=4,8cm

b: Xét ΔADH vuông tại H và ΔCBA vuông tại A có

góc ADH=góc BCA

=>ΔADH đồng dạng với ΔCBA

c: Xét ΔADM và ΔACN có

AD/AC=DM/CN

góc ADM=góc ACN

=>ΔADM đồng dạng với ΔACN

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

Vì \(\left\{ \begin{array}{l}BC \bot AB'\\B'C' \bot AB'\end{array} \right. \Rightarrow BC//B'C'\)(quan hệ từ vuông góc đến song song).

- Xét tam giác \(AB'C'\) có \(BC//B'C'\) và \(BC\) cắt \(AB';AC'\) lần lượt tại \(B;C\).

Theo hệ quả của định lí Thales ta có:

\(\frac{{AB}}{{AB'}} = \frac{{BC}}{{B'C'}} \Rightarrow \frac{x}{{x + h}} = \frac{a}{{a'}} \Rightarrow xa' = a\left( {x + h} \right) \Leftrightarrow xa' = ax + ah\) 

\( \Leftrightarrow xa' - ax = ah \Leftrightarrow x\left( {a' - a} \right) = ah \Leftrightarrow x = \frac{{ah}}{{a' - a}}\) (điều phải chứng minh).

a: Xét ΔABC có

M là trung điểm của BA
N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

=>MN=BE và MN//BE

=>BMNE là hình bình hành

b: Ta có: ΔAHB vuông tại H

mà HM là đường trung tuyến

nên HM=AM

=>M nằm trên đường trung trực của AH(1)

Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến

nên HN=AC/2=AN

=>N nằm trên đường trung trực của AH(2)

Từ (1) và (2) suy ra MN là đường trung trực của AH

Xét ΔABC có 

M là trung điểm của AB

E là trung điểm của BC

Do đó: ME là đường trung bình

=>ME=AC/2

mà HN=AC/2

nên ME=HN

Xét tứ giác MNEH có MN//EH

nên MNEH là hình thang

mà ME=NH

nên MNEH là hình thang cân

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Vì \(MN//BC\) nên \(\widehat {MNB} = \widehat {ABC}\) (hai góc so le trong)

Vì \(MB//AC\) nên \(\widehat {MNB} = \widehat {ABC}\) (hai góc so le trong)

Xét tam giác \(BNM\) tam giác \(ABC\) ta có:

\(\widehat {MNB} = \widehat {ABC}\) (chứng minh trên)

\(\widehat {MNB} = \widehat {ABC}\) (chứng minh trên)

Do đó, \(\Delta BNM\backsim\Delta ABC\) (g.g)

b) Vì \(\Delta BNM\backsim\Delta ABC\) nên \(\widehat M = \widehat C = 48^\circ \) (hai góc tương ứng).

Bài 1:

a: Xét ΔBNM có AD//NM

nên MN/AD=BM/BD

=>MN*BD=AD*BM

b: ME/AD=CM/CD=CM/BD

MN/AD+ME/AD=BM/BD+CM/BD=BC/BD=2

c:

Xét ΔBÂC có BE là phân giác

nen CE/CA=BC/BA

=>MC/MD=CE/CA=BC/BA

19 tháng 8 2021

a) Xét tam giác ABC có

M là trung điểm của AB(gt)

MN//BC(gt)

=> N là trung điểm của AC

\(\Rightarrow NC=\dfrac{1}{2}AC=\dfrac{1}{2}.6=3\left(cm\right)\)

b) Ta có MN//BC(gt)

Mà \(I\in MN,K\in BC\)

\(\Rightarrow IN//KC\)

Xét tam giác AKC có:

IN//KC(cmt)

N là trung điểm của AC( cmt)

=> I là trung điểm của AK(đpcm)