K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

\(x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

\(\Rightarrow P=\sqrt{x^2-2x+5}\ge\sqrt{4}=2\)

\(minP=2\Leftrightarrow x=1\)

24 tháng 10 2017

\(M=2x+\sqrt{5-x^2}\)

\(\Leftrightarrow M-2x=\sqrt{5-x^2}\)

\(\Leftrightarrow M^2-4Mx+4x^2=5-x^2\)

\(\Leftrightarrow5x^2-4Mx+M^2-5=0\)

Để PT theo nghiệm x có nghiệm thì

\(\Delta'=4M^2-5.\left(M^2-5\right)\ge0\)

\(\Leftrightarrow M^2\le25\)

\(\Leftrightarrow-5\le M\le5\)

24 tháng 10 2017

Max đúng

Min sai rồi

DK \(x\ge-\sqrt{5}\)

=> M \(\ge-2\sqrt{5}\)

11 tháng 6 2016

\(\sqrt{x^2+2x+5}=\sqrt{\left(x+1\right)^2+4}\ge\sqrt{4}=2.\)với mọi x 

GTNN \(\sqrt{x^2+2x+5}=2\)khi x = -1 

11 tháng 6 2016

\(\sqrt{x^2+2x+5}=\sqrt{\left(x+1\right)^2+4}\ge2\) với x=-1

21 tháng 8 2020

a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)

Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)

\(\Rightarrow A\ge\sqrt{1}=1\)

Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)

b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)

\(=\sqrt{2\left(x-1\right)^2+4}\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow B\ge\sqrt{4}=2\)

Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Vậy \(minB=2\Leftrightarrow x=1\)

21 tháng 8 2020

Mơn bạn nha

2 tháng 4 2015

Ta có \(y\ge0\)

\(\Rightarrow P=\left(x^2+2x+1\right)-\left(x\sqrt{y}+\sqrt{y}\right)+y+4\)

\(\Rightarrow P=\left(x+1\right)^2-2.\left(x+1\right).\frac{\sqrt{y}}{2}+\left(\frac{\sqrt{y}}{2}\right)^2+\frac{3y}{4}+4\)

\(\Rightarrow P=\left(\left(x+1\right)-\frac{\sqrt{y}}{2}\right)^2+\frac{3y}{4}+4\)

Vì \(\left(\left(x+1\right)-\frac{\sqrt{y}}{2}\right)^2\ge0;\frac{3y}{4}\ge0\Rightarrow P\ge0+0+4=4\)

vậy minP = 4 khi x = -1 và y = 0

 

 

cảm ơn chị

23 tháng 5 2016

\(p=\sqrt{\left(\sqrt{2}x-\frac{1}{\sqrt{2}}\right)^2+\frac{9}{2}}+\sqrt{\left(\sqrt{2}x-\frac{3}{\sqrt{2}}\right)^2+\frac{19}{2}}\ge\sqrt{\left(\frac{3}{\sqrt{2}}-\sqrt{2}x+\sqrt{2}x-\frac{1}{\sqrt{2}}\right)^2+\left(\frac{3+\sqrt{19}}{\sqrt{2}}\right)^2}=\sqrt{2+\frac{\left(3+\sqrt{19}\right)}{2}^2}\)

24 tháng 5 2016

bạn Nguyễn Hải Đăng ơi đó là công thức gì vậy? cho mình xin cái công thức tổng quát với mình chưa hiểu lắm

NM
1 tháng 9 2021

ta có :

\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=\left|x+1\right|+\left|x+2\right|\ge\left|x+1-x-2\right|=1\)

Dấu bằng xảy ra khi : \(\left(x+1\right)\left(x+2\right)\le0\Leftrightarrow-2\le x\le-1\)

4 tháng 7 2015

\(\text{Tử }=\left(x^2-8x+16\right)+\left(x-2-2\sqrt{x-2}.\sqrt{2}+2\right)+2022\)

\(=\left(x-4\right)^2+\left(\sqrt{x-2}-\sqrt{2}\right)^2+2022\ge2022\)

Dấu "=" xảy ra khi \(x-4=0\text{ và }\sqrt{x-2}=\sqrt{2}\Leftrightarrow x=4\).

\(\text{Mẫu }=\sqrt{x-3}+\sqrt{5-x}\)

Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2-2ab\ge0\Rightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab=\left(a+b\right)^2\)

Dấu "=" xảy ra khi a = b.

\(\Rightarrow\left(\sqrt{x-3}+\sqrt{5-x}\right)^2\le2\left(x-3+5-x\right)=4\)

\(\Rightarrow\sqrt{x-3}+\sqrt{5-x}\le2\)

Dấu "=" xả ra khi \(\sqrt{x-3}=\sqrt{5-x}\Leftrightarrow x=4\)

\(\Rightarrow Q\ge\frac{2022}{2}=1011\)

Dấu "=" xảy ra khi x = 4.

Vậy GTNN của Q là 1011 khi x = 4.

22 tháng 5 2016

√(x² + 2x + 5) = √[(x + 1)² + 4] ≥ 2. 
√(2x² + 4x + 3) = √[2(x + 1)² + 1] ≥ 1. 
=> √(x² + 2x + 5) + √(2x² + 4x + 3) ≥ 3. 
___Dấu bằng xảy ra khi và chỉ khi x = - 1. 
Vậy biểu thức đã cho có giá trị nhỏ nhất là 3

ai tích mình mình sẽ tích lại

22 tháng 5 2016

Bằng biến đổi tương đương, ta chứng minh được BĐT : \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)

Biểu diễn : \(A=\sqrt{2}\left(\sqrt{x^2-x+\frac{5}{2}}+\sqrt{x^2-3x+7}\right)\)

\(=\sqrt{2}\left(\sqrt{\left(x-\frac{1}{2}\right)^2+\left(\frac{3}{2}\right)^2}+\sqrt{\left(\frac{3}{2}-x\right)^2+\left(\sqrt{\frac{19}{4}}\right)^2}\right)\ge\sqrt{2}.\sqrt{\left(x-\frac{1}{2}+\frac{3}{2}-x\right)^2+\left(\frac{3}{2}+\frac{\sqrt{19}}{2}\right)^2}=\sqrt{16+3\sqrt{19}}\)=> Min A = \(\sqrt{16+3\sqrt{19}}\)

Dấu "=" bạn tự xét nhé!