Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Công thức trên ghi sai, Công thức đúng như dưới đây:
\(S=\frac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\)
\(S=\frac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\)
\(S=\frac{x+y}{\sqrt{x\left(2x+y\right)}.1+\sqrt{y\left(2y+x\right)}.1}\)
\(S\ge\frac{x+y}{\frac{3x+y}{2}+\frac{3y+x}{2}}=\frac{2\left(x+y\right)}{4\left(x+y\right)}=\frac{1}{2}\)(BĐT cosi)
Vậy Min = 1/2 <=> x = y
Nhờ giải giúp, công thức trên ghi sai, công thức đúng như dưới đây
S = \(\frac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\)
Áp dụng bất đẳng thức Cauchy, ta có: \(\sqrt{x\left(2x+y\right)}=\frac{1}{\sqrt{3}}.\sqrt{3x\left(2x+y\right)}\le\frac{5x+y}{2\sqrt{3}}\)
Tương tự: \(\sqrt{y\left(2y+x\right)}\le\frac{5y+x}{2\sqrt{3}}\)
\(\Rightarrow\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}\le\frac{6\left(x+y\right)}{2\sqrt{3}}=\frac{3\left(x+y\right)}{\sqrt{3}}\)\(\Rightarrow P=\frac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\ge\frac{x+y}{\frac{3}{\sqrt{3}}\left(x+y\right)}=\frac{1}{\sqrt{3}}\)
Đẳng thức xảy ra khi x = y
vì x+y=1\(\Rightarrow\sqrt{1-x}=\sqrt{x+y-x}=\sqrt{y}\)
\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}=\frac{x+y+y}{\sqrt{y}}=\frac{y+1}{\sqrt{y}}=\frac{y+\frac{1}{2}}{\sqrt{y}}+\frac{1}{2\sqrt{y}}\)
ad cau-chy có \(y+\frac{1}{2}\ge2\sqrt{\frac{y}{2}}=\sqrt{2y}\)\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}\ge\sqrt{2}+\frac{1}{2\sqrt{y}}\)
Tương tự .....\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\)
cm \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{4}{\sqrt{x}+\sqrt{y}}\ge\frac{4}{\sqrt{2\left(x+y\right)}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)
\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}.2\sqrt{2}=3\sqrt{2}\)
Dấu = xra khi x=y=1/2
k cho mk nha mn ^.^
Ta có :
\(P=x^2-x\sqrt{y}+x+y-\sqrt{y}+1\)
\(\Leftrightarrow\)\(2P=2x^2-2x\sqrt{y}+2x+2y-2\sqrt{y}+2\)
\(\Leftrightarrow\)\(2P=\left[\left(x^2-2x\sqrt{y}+y\right)+\frac{4}{3}\left(x-\sqrt{y}\right)+\frac{4}{9}\right]+\left(x^2+\frac{2x}{3}+\frac{1}{9}\right)+\left(y-\frac{2}{3}.\sqrt{y}+\frac{1}{9}\right)+\frac{4}{3}\)
\(\Leftrightarrow\)\(2P=\left(x-\sqrt{y}+\frac{2}{3}\right)+\left(x+\frac{1}{3}\right)^2+\left(y^2-\frac{1}{3}\right)^2+\frac{4}{3}\ge\frac{4}{3}\)
\(\Leftrightarrow\)\(2P\ge\frac{4}{3}\)
\(\Rightarrow\)\(P\ge\frac{2}{3}\)
Vậy \(P_{min}=\frac{2}{3}\)
àk chỗ \(\left(x-\sqrt{y}+\frac{2}{3}\right)\) mình nhầm nhé phải là \(\left(x-\sqrt{y}+\frac{2}{3}\right)^2\)
hihi tại nhìu số quá nên nhìn nhầm sorry :'P
ĐK: \(x\ge1\)
\(A=2x+y^2-2\sqrt{x-1}\left(y+1\right)\)
\(=\left(y^2-2\sqrt{x-1}.y+x-1\right)+\left(x-1-2\sqrt{x-1}+1\right)+1\)
\(=\left(y-\sqrt{x-1}\right)^2+\left(\sqrt{x-1}-1\right)^2\ge1\)
Dấu "=" xảy ra < => x = 2; y = 1
Vậy min A = 1 tại x = 2 và y = 1.
cho đường tròn tâm O bán kính r,điểm A cố định nằm ngoài đường tròn.kẻ 2 tiếp tuyến AM,AN.Đường thẳng D đi qua A cắt đường tròn O tại B,C với AB<AC.Chứng minh 5 điểm A,M,N,O,I thuộc đường tròn
Ta có : 2P = \(\frac{\sqrt{4x^2-4xy+4y^2}}{x+y+2z}+\frac{\sqrt{4y^2-4yz+4z^2}}{y+z+2x}+\frac{\sqrt{4z^2-4zx+4x^2}}{z+x+2y}\)
\(=\frac{\sqrt{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}}{x+y+2z}+\frac{\sqrt{\left(2y-z\right)^2+\left(\sqrt{3}z\right)^2}}{y+z+2x}+\frac{\sqrt{\left(2z-x\right)^2+\left(\sqrt{3}x\right)^2}}{z+x+2y}\)
Lại có \(\frac{\sqrt{\left[\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2\right]\left[\left(1^2+\left(\sqrt{3}\right)^2\right)\right]}}{x+y+2z}\ge\frac{\left[\left(2x-y\right).1+3y\right]}{x+y+2z}=\frac{2\left(x+y\right)}{x+y+2z}\)
=> \(\sqrt{\frac{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}{x+y+2z}}\ge\frac{x+y}{x+y+2z}\)(BĐT Bunyakovsky)
Tương tự ta đươc \(2P\ge\frac{x+y}{x+y+2z}+\frac{y+z}{2x+y+z}+\frac{z+x}{2y+z+x}\)
Đặt x + y = a ; y + z = b ; x + z = c
Khi đó \(2P\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
\(\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3\ge\frac{9}{2}-3=\frac{3}{2}\)
=> \(P\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> x = y = z
bài 8 : bỏ dấu hoặc rồi tính
a;( 17 - 299) + ( 17 - 25 + 299)
Ta có \(y\ge0\)
\(\Rightarrow P=\left(x^2+2x+1\right)-\left(x\sqrt{y}+\sqrt{y}\right)+y+4\)
\(\Rightarrow P=\left(x+1\right)^2-2.\left(x+1\right).\frac{\sqrt{y}}{2}+\left(\frac{\sqrt{y}}{2}\right)^2+\frac{3y}{4}+4\)
\(\Rightarrow P=\left(\left(x+1\right)-\frac{\sqrt{y}}{2}\right)^2+\frac{3y}{4}+4\)
Vì \(\left(\left(x+1\right)-\frac{\sqrt{y}}{2}\right)^2\ge0;\frac{3y}{4}\ge0\Rightarrow P\ge0+0+4=4\)
vậy minP = 4 khi x = -1 và y = 0
cảm ơn chị