Tính giá trị của biểu thức sau:                                                   ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2023

Ta có

\(\left(x+x\right)^3=x^3+3x^2y+3xy^2+y^3=x^3+y^3+3xy\left(x+y\right)\)

\(\Rightarrow x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(\Rightarrow K=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\) Với x+y=1

\(\Rightarrow K=1^3-3xy+3xy=1\)

 

23 tháng 5 2017

..

x3 + y3 + 3xy = x3 + y+ 3xy(x + y)      (vì x + y = 1)

                     = x3 + 3x2y + 3xy2 + y3

                     = (x + y)3

                     = 13 = 1.

ý b tương tự.  

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

24 tháng 7 2018

\(Q=x^3-y^3-3xy\)

\(\Rightarrow Q=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(\Rightarrow Q=x^2+xy+y^2-3xy\)

\(\Rightarrow Q=x^2-2xy+y^2=\left(x-y\right)^2\)

\(\Rightarrow Q=1^2=1\)

24 tháng 7 2018

\(Q=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy=x^2+xy+y^2-3xy\)

\(x^2+y^2-2xy=\left(x-y\right)^2=1^2=1\)

7 tháng 10 2016

Phan Văn Hiếu Bài của bạn ngay từ dòng đầu đã sai hướng làm rồi nhé :)

Ta có :

\(x^3+y^3+3xy\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)+3xy-3x^2y-3xy^2\)

\(=\left(x+y\right)^3-3xy\left(x+y-1\right)\)

Thay \(x+y=1;\) có :

\(=1^3-3xy\left(1-1\right)\)

\(=1-0\)

\(=1\)

Vậy ...

7 tháng 10 2016

\(x^3+y^3+3xy=\left(x+y\right)\left(x^2+xy+y^2\right)+3xy\)

\(=x^2+2xy+y^2+2xy\)

\(=2xy\)

đế đây mk chịu

1 tháng 10 2016

a)\(\left(x+y\right)^3=x^3+y^3+3xy\left(x+y\right)=x^3+y^3+3xy=1^3=1\)

b)\(\left(x-y\right)^3=x^3-y^3-3xy\left(x-y\right)=x^3-y^3-3xy=1^3=1\)

Bài này là trên vio mk cx gặp r

1 tháng 10 2016

ukm

cam on

ko bik dung hay sai

 

28 tháng 6 2016

\(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\)

\(=x^3-3x^2y+3xy^2-y^3-x^2+2xy-y^2\)

\(=\left(x-y\right)^3-\left(x-y\right)^2\)
\(=x-y\)

\(=7\)

20 tháng 12 2017

hình như bạn bị sai dấu bằng thứ 4 phải không

8 tháng 10 2016

Có: \(x-y=1\)

\(x^3-y^3-3xy\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\) 

\(=x^2+xy+y^2-3xy\)

\(=x^2-2xy+y^2\)

\(=\left(x-y\right)^2\)

\(=1\)

30 tháng 11 2019

a)\(A=\left(\frac{x+y}{x-2y}+\frac{3y}{2y-x}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(\frac{x+y-3y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(\frac{x-2y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(1-3xy\right).\frac{-x-1}{1-3xy}+\frac{x^2}{x+1}\)

\(=-\left(x+1\right)+\frac{x^2}{x+1}\)`

\(=\frac{-\left(x+1\right)^2+x^2}{x+1}\)

\(=\frac{-x^2-2x-1+x^2}{x+1}\)

\(=\frac{-2x-1}{x+1}\)(1)

b) Thay \(x=-3,y=2014\)vào (1) ta được:

\(A=\frac{-2.\left(-3\right)-1}{-3+1}=\frac{-5}{2}\)

Vậy \(A=\frac{-5}{2}\)với x=-3 và y=2014

12 tháng 7 2024

12 tháng 7 2024

b; 13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\).y + 3\(xy^2\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\)

    1 = \(x^3\) - y3 - 3\(xy\)