Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phan Văn Hiếu Bài của bạn ngay từ dòng đầu đã sai hướng làm rồi nhé :)
Ta có :
\(x^3+y^3+3xy\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)+3xy-3x^2y-3xy^2\)
\(=\left(x+y\right)^3-3xy\left(x+y-1\right)\)
Thay \(x+y=1;\) có :
\(=1^3-3xy\left(1-1\right)\)
\(=1-0\)
\(=1\)
Vậy ...
\(x^3+y^3+3xy=\left(x+y\right)\left(x^2+xy+y^2\right)+3xy\)
\(=x^2+2xy+y^2+2xy\)
\(=2xy\)
đế đây mk chịu
\(x+y=1\)
\(\Leftrightarrow\)\(\left(x+y\right)^2=1\)
\(\Leftrightarrow\)\(x^2+y^2=1-2xy\)
\(x+y=1\)
\(\Leftrightarrow\)\(\left(x+y\right)^3=1\)
\(\Leftrightarrow\)\(x^3+y^3=1-3xy\)
\(H=1-3xy+3xy\left(1-2xy\right)+6x^2y^2\left(xy+y\right)\)
\(=1-6x^2y^2+6x^2y^2\left(xy+y\right)\)
\(=1-6x^2y^2\left(1-xy-y\right)\)
\(=1-6x^2y^2\left(x+y-xy-y\right)\)
\(=1-6x^2y^2\left(x-xy\right)\)
\(=1-6x^3y^2\left(1-y\right)\)
\(=1-6x^3y^2\left(x+y-y\right)\)
\(=1-6x^4y^2\)
mới ra đc đến đây
a)\(A=\left(\frac{x+y}{x-2y}+\frac{3y}{2y-x}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(\frac{x+y-3y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(\frac{x-2y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(1-3xy\right).\frac{-x-1}{1-3xy}+\frac{x^2}{x+1}\)
\(=-\left(x+1\right)+\frac{x^2}{x+1}\)`
\(=\frac{-\left(x+1\right)^2+x^2}{x+1}\)
\(=\frac{-x^2-2x-1+x^2}{x+1}\)
\(=\frac{-2x-1}{x+1}\)(1)
b) Thay \(x=-3,y=2014\)vào (1) ta được:
\(A=\frac{-2.\left(-3\right)-1}{-3+1}=\frac{-5}{2}\)
Vậy \(A=\frac{-5}{2}\)với x=-3 và y=2014
\(A=3\left(x^2+y^2\right)-2\left(x^3+y^3\right)\)
\(=3x^2+3y^2-2\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=3x^2+3y^2-2.1\left(x^2-xy+y^2\right)\)
\(=3x^2+3y^2-2x^2+2xy-2y^2\)
\(=x^2+2xy+y^2=\left(x+y\right)^2=1^2=1\)
\(B=x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2.1\)
\(=x^3+y^3+3xy\left(x+y\right)^2-6x^2y^2+6x^2y^2\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=x^2-xy+y^2+3xy\)
\(=x^2+2xy+y^2=\left(x+y\right)^2=1^2=1\)
Đề sai e nhé
\(E=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)+2017\)
\(=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy+2017\)
\(=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2-2xy+y^2\right)+2017\)
\(=\left(x-y\right)^3+\left(x-y\right)^2+2017\)
\(=\left(-3\right)^3+\left(-3\right)^2+2017\)
\(=-27+9+2017\)
\(=1999\)
\(E=\left(x^3+3xy^2+3x^2y+y^3\right)+3\left(x+y\right)-3\left(x^2+2xy+y^2\right)+2016\)
\(=\left(x+y\right)^3+3\left(x+y\right)-3\left(x+y\right)^2+2016\)
\(=21^3+3.21-3.21^2+2016\)
\(=\left(21-1\right)^3+2017=8000+2017=10017\)
Mình không viết lại đề nha ~
\(E=\left(x^3+3xy^2+3x^2y+y^3\right)+\left(3y+3x\right)+\left(3x^2+6xy+3y^2\right)+2016\)
\(E=\left(x+y\right)^3+3\left(x+y\right)+3\left(x+y\right)^2+2016\)
\(E=\left(x+y\right)[\left(x+y\right)^2+3+\left(x+y\right)]+2016\)
\(E=21\left(21^2+3+21\right)+2016\)
\(E=21.465+2016\)
\(E=9765+2016=11781\)
\(Q=x^3-y^3-3xy\)
\(\Rightarrow Q=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(\Rightarrow Q=x^2+xy+y^2-3xy\)
\(\Rightarrow Q=x^2-2xy+y^2=\left(x-y\right)^2\)
\(\Rightarrow Q=1^2=1\)
\(Q=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy=x^2+xy+y^2-3xy\)
\(x^2+y^2-2xy=\left(x-y\right)^2=1^2=1\)