\(x^3-y^3-3xy\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

\(Q=x^3-y^3-3xy\)

\(\Rightarrow Q=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(\Rightarrow Q=x^2+xy+y^2-3xy\)

\(\Rightarrow Q=x^2-2xy+y^2=\left(x-y\right)^2\)

\(\Rightarrow Q=1^2=1\)

24 tháng 7 2018

\(Q=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy=x^2+xy+y^2-3xy\)

\(x^2+y^2-2xy=\left(x-y\right)^2=1^2=1\)

7 tháng 10 2016

Phan Văn Hiếu Bài của bạn ngay từ dòng đầu đã sai hướng làm rồi nhé :)

Ta có :

\(x^3+y^3+3xy\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)+3xy-3x^2y-3xy^2\)

\(=\left(x+y\right)^3-3xy\left(x+y-1\right)\)

Thay \(x+y=1;\) có :

\(=1^3-3xy\left(1-1\right)\)

\(=1-0\)

\(=1\)

Vậy ...

7 tháng 10 2016

\(x^3+y^3+3xy=\left(x+y\right)\left(x^2+xy+y^2\right)+3xy\)

\(=x^2+2xy+y^2+2xy\)

\(=2xy\)

đế đây mk chịu

8 tháng 10 2016

Có: \(x-y=1\)

\(x^3-y^3-3xy\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\) 

\(=x^2+xy+y^2-3xy\)

\(=x^2-2xy+y^2\)

\(=\left(x-y\right)^2\)

\(=1\)

24 tháng 7 2018

\(x+y=1\)

\(\Leftrightarrow\)\(\left(x+y\right)^2=1\)

\(\Leftrightarrow\)\(x^2+y^2=1-2xy\)

\(x+y=1\)

\(\Leftrightarrow\)\(\left(x+y\right)^3=1\)

\(\Leftrightarrow\)\(x^3+y^3=1-3xy\)

\(H=1-3xy+3xy\left(1-2xy\right)+6x^2y^2\left(xy+y\right)\)

\(=1-6x^2y^2+6x^2y^2\left(xy+y\right)\)

\(=1-6x^2y^2\left(1-xy-y\right)\)

\(=1-6x^2y^2\left(x+y-xy-y\right)\)

\(=1-6x^2y^2\left(x-xy\right)\)

\(=1-6x^3y^2\left(1-y\right)\)

\(=1-6x^3y^2\left(x+y-y\right)\)

\(=1-6x^4y^2\)

mới ra đc đến đây

                           

30 tháng 11 2019

a)\(A=\left(\frac{x+y}{x-2y}+\frac{3y}{2y-x}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(\frac{x+y-3y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(\frac{x-2y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(1-3xy\right).\frac{-x-1}{1-3xy}+\frac{x^2}{x+1}\)

\(=-\left(x+1\right)+\frac{x^2}{x+1}\)`

\(=\frac{-\left(x+1\right)^2+x^2}{x+1}\)

\(=\frac{-x^2-2x-1+x^2}{x+1}\)

\(=\frac{-2x-1}{x+1}\)(1)

b) Thay \(x=-3,y=2014\)vào (1) ta được:

\(A=\frac{-2.\left(-3\right)-1}{-3+1}=\frac{-5}{2}\)

Vậy \(A=\frac{-5}{2}\)với x=-3 và y=2014

25 tháng 8 2018

M = ( x - y )3 - ( x - y )2 

   = 73 - 72 = 294

N = x3 + x2  - y2 + y2 + xy - 3x2y +3xy2 - 3xy - 95

  = ( x - y )3 + ( x - y )2 - 95

  = 73 + 72 - 95 = 297

Mình không chép lại đề nhé !

Bạn chép sai đề rồi , câu b ( x - y + 1 ) mới đúng nha

6 tháng 8 2019

\(A=3\left(x^2+y^2\right)-2\left(x^3+y^3\right)\)

\(=3x^2+3y^2-2\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=3x^2+3y^2-2.1\left(x^2-xy+y^2\right)\)

\(=3x^2+3y^2-2x^2+2xy-2y^2\)

\(=x^2+2xy+y^2=\left(x+y\right)^2=1^2=1\)

\(B=x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2.1\)

\(=x^3+y^3+3xy\left(x+y\right)^2-6x^2y^2+6x^2y^2\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=x^2-xy+y^2+3xy\)

\(=x^2+2xy+y^2=\left(x+y\right)^2=1^2=1\)

19 tháng 10 2019

Đề sai e nhé

\(E=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)+2017\)

\(=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy+2017\)

\(=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2-2xy+y^2\right)+2017\)

\(=\left(x-y\right)^3+\left(x-y\right)^2+2017\)

\(=\left(-3\right)^3+\left(-3\right)^2+2017\)

\(=-27+9+2017\)

\(=1999\)

\(E=\left(x^3+3xy^2+3x^2y+y^3\right)+3\left(x+y\right)-3\left(x^2+2xy+y^2\right)+2016\)

\(=\left(x+y\right)^3+3\left(x+y\right)-3\left(x+y\right)^2+2016\)

\(=21^3+3.21-3.21^2+2016\)

\(=\left(21-1\right)^3+2017=8000+2017=10017\)

20 tháng 10 2019

Mình không viết lại đề nha ~

\(E=\left(x^3+3xy^2+3x^2y+y^3\right)+\left(3y+3x\right)+\left(3x^2+6xy+3y^2\right)+2016\)

\(E=\left(x+y\right)^3+3\left(x+y\right)+3\left(x+y\right)^2+2016\)

\(E=\left(x+y\right)[\left(x+y\right)^2+3+\left(x+y\right)]+2016\)

\(E=21\left(21^2+3+21\right)+2016\)

\(E=21.465+2016\)

\(E=9765+2016=11781\)