Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)
\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=10^2-2.\left(-3\right)^2=82\)
b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)
\(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=1.\left(1-2xy-xy\right)+3xy=1\)
Các câu còn lại tương tự
\(=\left(x^3-y^3\right)-\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)^2\left(1\right)\)
Xét : \(\left(x-y\right)^2=x^2+y^2-2xy\)
Thay \(\hept{\begin{cases}x-y=-7\\xy=-6\end{cases}\left(3\right)}\)vào , ta được :
\(x^2+y^2=49-12=37\left(2\right)\)
Thay \(\left(2\right)\),\(\left(3\right)\)vào \(\left(1\right)\)vào , ta có giá trị của biểu thức tương đương với :
\(-7\left(37-6\right)-\left(-7^2\right)=-7.31-49=-266\)
\(H=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)
\(H=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-95\)
\(\Leftrightarrow H=x^3-3x^2y+3xy^2-y^3+x^2-2xy+y^2-95\)
\(\Leftrightarrow\left(x-y\right)^3+\left(x-y\right)^2-95\)
\(\Leftrightarrow H=7^3+7^2-95=297\)
\(x+y=1\)
\(\Leftrightarrow\)\(\left(x+y\right)^2=1\)
\(\Leftrightarrow\)\(x^2+y^2=1-2xy\)
\(x+y=1\)
\(\Leftrightarrow\)\(\left(x+y\right)^3=1\)
\(\Leftrightarrow\)\(x^3+y^3=1-3xy\)
\(H=1-3xy+3xy\left(1-2xy\right)+6x^2y^2\left(xy+y\right)\)
\(=1-6x^2y^2+6x^2y^2\left(xy+y\right)\)
\(=1-6x^2y^2\left(1-xy-y\right)\)
\(=1-6x^2y^2\left(x+y-xy-y\right)\)
\(=1-6x^2y^2\left(x-xy\right)\)
\(=1-6x^3y^2\left(1-y\right)\)
\(=1-6x^3y^2\left(x+y-y\right)\)
\(=1-6x^4y^2\)
mới ra đc đến đây
1) \(\frac{xy}{x^2+y^2}=\frac{3}{8}\Leftrightarrow3x^2+3y^2-8xy=0\)
Nhận thấy điều kiện của phương trình là x,y cùng khác 0
Chia cả hai vê của phương trình trên cho \(y^2\ne0\)được :
\(3\left(\frac{x}{y}\right)^2-8\left(\frac{x}{y}\right)+3=0\). Đặt \(a=\frac{x}{y}\), phương trình trở thành : \(3a^2-8a+3=0\Leftrightarrow\orbr{\begin{cases}x=\frac{4+\sqrt{7}}{3}\\x=\frac{4-\sqrt{7}}{3}\end{cases}}\)
Từ đó rút ra được tỉ lệ của \(\frac{x}{y}\). Bạn thay vào tính A là được :)
2) \(\frac{x^9-1}{x^9+1}=7\Leftrightarrow\frac{x^9-1}{x^9+1}-1=6\Leftrightarrow\frac{-2}{x^9+1}=6\Leftrightarrow x^9=\frac{-2}{6}-1=-\frac{4}{3}\)
Ta có \(A=\frac{\left(x^9\right)^2-1}{\left(x^9\right)^2+1}\). Thay giá trị của x9 vừa tính ở trên vào là được :)
\(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\)
\(=x^3-3x^2y+3xy^2-y^3-x^2+2xy-y^2\)
\(=\left(x-y\right)^3-\left(x-y\right)^2\)
\(=x-y\)
\(=7\)
hình như bạn bị sai dấu bằng thứ 4 phải không