Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
536 = (56)6 = 156256
1124 = (114)6 = 146416
vậy 536 > 1124
536 = 53.12 = ( 53 )12 = 12512
1124 = 112.12 = ( 112 )12 = 12112
Vì 12512 > 12112 nên 536 > 1124
\(2^{20}\)và \(5\cdot2^{18}\)
\(2^{20}=2^{18}\cdot2^2=2^{18}\cdot4\)
\(4\cdot2^{18}< 5\cdot2^{18}\)
\(\Leftrightarrow2^{20}< 5\cdot2^{18}\)
Ta có: 2^18.5>2^18.4=2^18.2^2=2^20
Ta có: Vì 2^20=2^20 mà 2^20<2^18.5 => 2^20 < 2^18.5
Vậy 2^20 nhỏ hơn 2^18 nhân 5
Nhớ k cho mình nha
kb với mình không
\(5^{36}=5^{12.3}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=11^{12.2}=\left(11^2\right)^{12}=121^{12}\)
\(\Rightarrow5^{36}>11^{24}\)
Ta có : 25^5 = (5^2)^5 = 5^10 < 5^9
=> -1/5^9 > -1/5^10
Hay -1/5^9 > 1/25^5
A=\(8^2.32^2=8.8.32.32.32.32=2^3.2^3.2^5.2^5.2^5.2^5=2^{\left(3+3+5+5+5+5\right)}=2^{26}\)
Đặt \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\)
\(A>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\) ( 19 số hạng )
\(A>\frac{19}{20}\)
C,5^36>11^24
\(5^{37}< 11^{24}\)
Mình chưa tính đâu có gì ủng hộ nha