Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)
Bài này có điều kiện a,b,c không âm thì phải
Áp dụng bất đẳng thức AM-GM ta có :
\(b^2+c^2\ge2\sqrt{b^2c^2}=2\sqrt{\left(bc\right)^2}=2\left|bc\right|=2bc\)( b,c > 0 )
=> a( b2 + c2 ) ≥ 2abc
Tương tự : b( c2 + a2 ) ≥ 2abc ; c( a2 + b2 ) ≥ 2abc
Cộng vế với vế các bđt trên ta có đpcm
Đẳng thức xảy ra <=> a = b = c
Đặt \(A=\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)
Hmm... Ta có BĐT phụ : \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)"=" <=> x = y
\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right);\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right);\frac{1}{c+a}\le\frac{1}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow A\le\frac{1}{2}\left(\frac{ab+ac+bc}{abc}\right)\)
\(\Rightarrow A\le\frac{3ab+3ac+3bc}{6abc}\)
Ta có: \(a^2+b^2+c^2\ge ab+ac+bc\)
\(\Rightarrow A\le\frac{3ab+3ac+3bc}{6abc}\le\frac{a^2+b^2+c^2+2ab+2ac+2bc}{6abc}=\frac{\left(a+b+c\right)^2}{6abc}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=6abc\)
\(\Leftrightarrow a^2+b^2+c^2-\left(ab+bc+ac\right)=3abc\)
\(\Leftrightarrow\left(a+b+c\right)^2-3\left(ab+bc+ac\right)=3abc\)
Đặt \(\left(a+b+c,ab+bc+ac,abc\right)=\left(p,q,r\right)\)
\(\Rightarrow p^2-3q=3r\)
Khi đó \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ac\right)+3abc\)
\(\Leftrightarrow a^3+b^3+c^3=p^3+3pq+3r=p\left(p^2-3q\right)+3r=3pr+3r\)
Vậy .....
Chúc bạn học tốt!
Chia cả 2 vế của giả thiết cho a,b,c ta được :
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\leftrightarrow\)khi đó bài toán trở thành :
\(xy+yz+zx+x+y+z=6\)
Chứng minh rằng \(x^2+y^2+z^2\ge3\)
Sử dụng bất đẳng thức AM-GM ta có :
\(\hept{\begin{cases}x^2+1\ge2\sqrt{x^2}=2x\\y^2+1\ge2\sqrt{y^2}=2y\\z^2+1\ge2\sqrt{z^2}=2z\end{cases}}< =>x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(*)
Tiếp tục sử dụng AM-GM ta có :
\(\hept{\begin{cases}x^2+y^2\ge2\sqrt{x^2y^2}=2xy\\y^2+z^2\ge2\sqrt{y^2z^2}=2yz\\z^2+x^2=2\sqrt{z^2x^2}=2zx\end{cases}< =>2\left(x^2+y^2+z^2\right)\ge}2\left(xy+yz+zx\right)\)(**)
Cộng theo vế bất đẳng thức (*) và (**) ta được :
\(3\left(x^2+y^2+z^2+1\right)\ge2\left(xy+yz+zx+x+y+z\right)=2.6=12\)
\(< =>x^2+y^2+z^2+1\ge\frac{12}{3}=4< =>x^2+y^2+z^2\ge3\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1< =>a=b=c=1\)
Lời giải:
Ta có:
\((a-b)^2+(b-c)^2+(c-a)^2=6abc\)
\(\Leftrightarrow a^2+b^2+c^2-(ab+bc+ac)=3abc\)
\(\Leftrightarrow (a+b+c)^2-3(ab+bc+ac)=3abc\)
Đặt \((a+b+c,ab+bc+ac,abc)=(p,q,r)\)
\(\Rightarrow p^2-3q=3r\)
Khi đó, \(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)
\(\Leftrightarrow a^3+b^3+c^3=(a+b+c)^3-3(a+b+c)(ab+bc+ac)+3abc\)
\(\Leftrightarrow a^3+b^3+c^3=p^3-3pq+3r=p(p^2-3q)+3r=3pr+3r\)
Vậy \(a^3+b^3+c^3=3abc(a+b+c+1)\)
Chắc bạn viết thiếu.