Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình làm cách cấp 2 nhé
ta có : 3n+2 + 3n+1 + 2n+2 + 2n+3
=3n . 9 + 3n . 3+ 2n . 4+ 2n . 8
=3n.( 9+3) + 2n.( 4+8)
=( 3n +2n ).12
vì 12 chia hết cho 6
=> DPCM
\(3^{n+5}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}.\left(81+1\right)+2^{n+2}.\left(2+1\right)\)
\(=3^n.41.6+2^{n+1}.6=6.\left(3^n.41+2^{n+1}\right)\)
Luôn luôn chia hết cho 6
Chứng minh rằng:
\(2^{10}+2^{11}+2^{12}\)
\(=2^{10}\left(1+2+2^2\right)\)
\(=2^{10}.7\) \(⋮\) 7
Vậy \(2^{10}+2^{11}+2^{12}\) chia hết cho 7
Chứng minh rằng:
\(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\)
\(=3^n.3^3+3^n.3^2+2^n.2^3+2^n.2^2\)
\(=3^n\left(3^3+3^2\right)+2^n\left(2^3+2^2\right)\)
\(=36.3^n+12.3^n\)
\(=6\left(6.3^n+2.3^n\right)\) \(⋮\) 6 với mọi n \(\in\) N
Vậy \(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\) chia hết cho 6 với mọi n \(\in\) N
\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^n.3^3+3^n.3+2^n.8+2^n.4=3^n.30+2^n.12=6\left(3^n.5+2^n.2\right)\)
=> luôn chia hết cho 6
dda bao la giai ra dum ma sao cu bao vao tuong tu mai
may nguoi thay j o tuong tu thi ghi ra dum