Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)
1:
\(n^2+4n+3\)
\(=n^2+3n+n+3\)
\(=\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=4\left(k+1\right)\left(k+2\right)\)
Vì k+1;k+2 là hai số nguyên liên tiếp
nên \(\left(k+1\right)\left(k+2\right)⋮2\)
=>\(4\left(k+1\right)\left(k+2\right)⋮8\)
hay \(n^2+4n+3⋮8\)
2: \(n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=2k\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)
=>\(k\left(k+1\right)\left(k+2\right)⋮6\)
=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)
hay \(n^3+3n^2-n-3⋮48\)
Lời giải:
$3^{n+3}+3^{n+1}+3^{n+3}+2^{n+2}$
$=2.3^{n+3}+3^{n+1}+2^{n+2}$
$=3^{n+1}(2.3^2+1)+2^{n+2}=3^{n+1}.19+2^{n+2}$
Ta thấy $3^{n+1}.19\vdots 3; 2^{n+2}\not\vdots 3$
$\Rightarrow 3^{n+3}+3^{n+1}+3^{n+3}+2^{n+2}\not\vdots 3$
$\Rightarrow 3^{n+3}+3^{n+1}+3^{n+3}+2^{n+2}\not\vdots 6$
Đề sai. Bạn xem lại nhé.
\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^n.3^3+3^n.3+2^n.8+2^n.4=3^n.30+2^n.12=6\left(3^n.5+2^n.2\right)\)
=> luôn chia hết cho 6