Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3^{n+2}-2^{n+2}+3^n-2^n=9\cdot3^n+3^n-\left(4\cdot2^n+2^n\right)\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)=10\cdot3^n-2\cdot5\cdot2^{n-1}=10\cdot\left(3^n-2^{n-1}\right)\)
Với mọi n thuộc N* thì \(2^{n-1}\)là 1 số nguyên nên A chia hết cho 10. (ĐPCM)
a)
=mn(m-n)(m+n)
Nếu 1 trg 2 số chia hết cho 3=> đpcm
Nếu cả 2 số cùng dư =>m-n chia hết cho 3 (đpcm)
Nếu cả 2 số khác dư (khác dư 0)=> m+n chia hết cho 3(đpcm)
Vậy mn(m^2-n^2) chia hết cho 3
b) Có 2005^2006 lẻ; 2006^2005 chẵn
Nếu n lẻ=> n+2005^2006 chẵn
Nếu n chẵn => n+2006^2005 chẵn
=> đều chia hết cho 2
=> đpcm.
\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^n.3^3+3^n.3+2^n.8+2^n.4=3^n.30+2^n.12=6\left(3^n.5+2^n.2\right)\)
=> luôn chia hết cho 6